

2024

Draft Document

DELIVERABLE 1.2

THIS DOCUMENT IS IN DRAFT FORM AND PENDING OFFICIAL
APPROVAL. IT IS SUBJECT TO REVIEW AND MAY BE UPDATED.

1

D1.2: MVP DEFINITION

AND ARCHITECTURE

This project has received funding from the European Union’s Horizon Research

and Innovation Actions under Grant Agreement № 101093216.

2

Title: Document version:

D1.2 MVP Definition and Architecture 0.7

Project number: Project Acronym Project Tittle

101093216 UPCAST Universal Platform

Components for Safe Fair

Interoperable Data Exchange,

Monetisation and Trading

Contractual Delivery Date: Actual Delivery Date: Deliverable Type*-Security*:

M9 (September 2023) M9 (September 2023) O-PU

*Type: P: Prototype; R: Report; D: Demonstrator; O: Other; ORDP: Open Research Data Pilot; E: Ethics.

**Security Class: PU: Public; PP: Restricted to other program participants (including the Commission); RE: Restricted to

a group defined by the consortium (including the Commission); CO: Confidential, only for members of the consortium

(including the Commission).

Responsible: Organization: Contributing WP:

Shanshan Jiang SINTEF WP1

Audun Vennesland SINTEF WP1

Contributing Authors (organization):

Shanshan Jiang (SINTEF), Audun Vennesland (SINTEF), Luis-Daniel Ibáñez (University of

Southampton), George Konstantinidis (University of Southampton), Semih Yumusak (University of

Southampton), Jaime Osvaldo Salas (University of Southampton), Tek Raj Chhetri (University of

Southampton), Margherita Forcolin (Maggioli), Kostas Kalaboukas (Maggioli), Sofoklis Efremidis

(Maggioli), Despina Psimaris (Maggioli), Vasiliki Nasi (Maggioli), Hanene Jemoui (CeADAR), Julia

Palma (CeADAR), Yibrah Gebreyesus (CeADAR), Aditya Grover (CeADAR), Ricardo Simon Carbajo

(CeADAR), Eugenia Papagiannakopoulou (ICT ABOVO), Georgios Lioudakis (ICT ABOVO), Mariza

Koukovini (ICT ABOVO), Santiago Andres Azcoitia (LS TECH), Evangelos Kotsifakos (LS TECH), Pelayo

Fernandez Blanco (LS TECH), Amit K. Srivastava (ALCATEL- LUCENT (Nokia)), Olga Papadodima

(NATIONAL HELLENIC RESEARCH FOUNDATION), Paraskevi Tarani (Major Development Agency of

Thessaloniki), Anthi Tsakiropoulou (Major Development Agency of Thessaloniki), Lazaros Ioannidis

(Open Knowledge Foundation Greece), Panagiotis Philippidis (Open Knowledge Foundation Greece),

Nenad Stojanovich (NISSATECH), Milan Vuckovic (NISSATECH), Fernando Perales (JOT INTERNET

MEDIA), Miguel Lopez (JOT INTERNET MEDIA), Alexandros Lemperos (CACTUS), Lorenzo Gugliotta

(KU Leuven)

3

Abstract:

This document is deliverable D1.2 MVP Definition and Architecture for the UPCAST project. The

document describes the initial UPCAST architecture including the functionality and interfaces of the

UPCAST plugins, the final pilot design and functionalities to demonstrate the use of these plugins, and

the definition of main features to be delivered in the UPCAST MVP. It also includes an initial description

of the vocabulary and data model to be used in UPCAST. In addition, this deliverable is accompanied

with a .qea/XMI file that contains architectural models defined in UML and BPMN diagrams, and a

website that documents the UPCAST vocabularies with available download serialization in a number

of formats (such as .owl, .ttl).

Keywords:

Technical Architecture, Minimum Viable Product (MVP), Pilot Design and Functionality.

REVISION HISTORY

Revision: Date: Description: Author (Organisation)

V0.1 29.06.2023
First version of the document, with

suggested structure and content
Shanshan Jiang (SINTEF)

V0.2 15.08.2023
Second version, adding content in

many sections.
Shanshan Jiang (SINTEF)

V0.3 31.08.2023

Updated with new structure. Pilot

use cases updated following the

new approach.

Shanshan Jiang (SINTEF)

V0.4 15.09.2023

Draft content in most sections.

Version sent for first internal

review.

Shanshan Jiang (SINTEF)

V0.5 19.09.2023
A complete version for second

internal review.
Shanshan Jiang (SINTEF)

V0.6 23.09.2023
Addressed most comments from

first and second internal reviews
Shanshan Jiang (SINTEF)

V0.7 26.09.2023

Final version for submission,

cleaned up and fixed remaining

issues.

Shanshan Jiang (SINTEF)

4

This project has received funding from the European Union’s Horizon Research and Innovation

Actions under Grant Agreement Nº 101093216.

More information available at https://upcastproject.eu/

COPYRIGHT STATEMENT

The work and information provided in this document reflects the opinion of the authors

and the UPCAST Project consortium and does not necessarily reflect the views of the

European Commission. The European Commission is not responsible for any use that

may be made of the information it contains. This document and its content are property

of the UPCAST Project Consortium. All rights related to this document are determined

by the applicable laws. Access to this document does not grant any right or license on

the document or its contents. This document or its contents are not to be used or treated

in any manner inconsistent with the rights or interests of the UPCAST Project

Consortium and are not to be disclosed externally without prior written consent from the

UPCAST Project Partners. Each UPCAST Project Partner may use this document in

conformity with the UPCAST Project Consortium Grant Agreement provisions.

TABLE OF CONTENTS

1 INTRODUCTION 10

1.1 UPCAST Project 10
1.2 Purpose of the Document 11
1.3 Scope of the Document 11
1.4 Structure of the Document 11

2 ARCADE FRAMEWORK 13

3 MVP DEFINITION 15

4 INITIAL UPCAST ARCHITECTURE AND VOCABULARY 18

4.1 Roles and Stakeholders 18
4.2 Plugin Reference Use Cases 18
4.2.1 Resource Specification 19
4.2.2 Data Processing Workflow 22
4.2.3 Privacy and Usage Control 24
4.2.4 Pricing 27
4.2.5 Valuation 29
4.2.6 Environmental Impact Optimiser 31
4.2.7 Resource Discovery 33
4.2.8 Negotiation and Contracting 35

https://upcastproject.eu/

5

4.2.9 Integration and Exchange 39
4.2.10 Secure Data Delivery 40
4.2.11 Monitoring 41
4.2.12 Federated Machine Learning 42
4.3 Environment Systems Model 47
4.4 Plugin Requirements 48
4.5 System Information Model and Vocabularies 61
4.5.1 Dataset Facet 62
4.5.2 Pricing Facet 62
4.5.3 Environmental Facet 63
4.5.4 Privacy and Usage Control Facet 63
4.5.5 Data Processing Workflow (DPW) Facet 64
4.5.6 Contracting and Negotiation Facet 65
4.6 System Decomposition Model 66
4.7 System Collaboration Model 66
4.8 Component and Interface Specification Model 71
4.8.1 Resource Specification 71
4.8.2 Data Processing Workflow 72
4.8.3 Privacy and Usage Control 73
4.8.4 Pricing 74
4.8.5 Valuation 74
4.8.6 Environmental Impact Optimiser 75
4.8.7 Resource Discovery 76
4.8.8 Negotiation and Contracting 76
4.8.9 Integration and Exchange 77
4.8.10 Secure Data Delivery 77
4.8.11 Monitoring 77
4.8.12 Federated Machine Learning 78
4.9 UPCAST Architecture 80

5 PILOT DESIGN AND FUNCTIONALITY – BIOMEDICAL AND GENOMIC DATA SHARING83

5.1 Roles and Stakeholders 83
5.2 Reference Use Cases 83
5.3 Business to Systems Mapping Model 87
5.4 Pilot Implementation Plan 88

6 PILOT DESIGN AND FUNCTIONALITY – PUBLIC ADMINISTRATION 90

6.1 Roles and Stakeholders 90
6.2 Reference Use Cases 90
6.3 Business to Systems Mapping Model 92
6.4 Pilot Implementation Plan 93

7 PILOT DESIGN AND FUNCTIONALITY – HEALTH AND FITNESS 95

7.1 Roles and Stakeholders 95
7.2 Reference Use Cases 95
7.3 Business to Systems Mapping Model 97
7.4 Pilot Implementation Plan 98

8 PILOT DESIGN AND FUNCTIONALITY – DIGITAL MARKETING 1 100

8.1 Roles and Stakeholders 100
8.2 Reference Use Cases 100
8.3 Business to Systems Mapping Model 103
8.4 Pilot Implementation Plan 104

6

9 PILOT DESIGN AND FUNCTIONALITY – DIGITAL MARKETING 2 106

9.1 Roles and Stakeholders 106
9.2 Reference Use Cases 106
9.3 Business to Systems Mapping Model 108
9.4 Pilot Implementation Plan 109

10 CONCLUSION AND FUTURE WORK 110

11 ACRONYMS 111

LIST OF FIGURES
Figure 1: Mapping between D1.2 content and ARCADE framework. 13

Figure 2: Core functionality included in the UPCAST MVP. The activities included in the MVP

are realised by means of the UPCAST Plugins except for "Publish resource" which is provided

by a marketplace or broker outside UPCAST. .. 15

Figure 3: Roles and stakeholders for the initial UPCAST architecture. 18

Figure 4: Top-level use case model for the Resource Specification plugin. 19

Figure 5: Detail use cases for the Resource Specification plugin.. 19

Figure 6: Top-level use case model for the Data Processing Workflow plugin. 22

Figure 7: Detail use cases for the Data Processing Workflow plugin. 22

Figure 8: Top-level use case model for the Privacy and Usage Control plugin. 24

Figure 9: Detail use cases for the Privacy and Usage Control plugin. 25

Figure 10: Top-level use case model for the Pricing plugin.. 27

Figure 11: Detail use cases for the Pricing plugin. ... 28

Figure 12: Top-level use case model for the Valuation plugin. ... 30

Figure 13: Detail use cases for the Valuation plugin. ... 30

Figure 14: Top-level use case model for the Environmental Impact Optimiser plugin. 31

Figure 15: Detail use cases for the Environmental Impact Optimiser plugin. 32

Figure 16: Top-level use case model for the Resource Discovery plugin. 33

Figure 17: Detail use cases for the Resource Discovery plugin. .. 33

Figure 18: Top-level use case model for the Negotiation and Contracting plugin. 35

Figure 19: Detail use cases for the Negotiation and Contracting plugin. 36

Figure 20: Top-level use case model for the Integration and Exchange plugin. 39

Figure 21: Detail use cases for the Integration and Exchange plugin. 39

Figure 22: Top-level use case model for the Secure Data Delivery plugin. 40

Figure 23: Top-level use case model for the Monitoring plugin. ... 41

Figure 24: Detail use cases for the Monitoring plugin. ... 42

Figure 25: Top-level use case model for the Federated Machine Learning plugin. 43

Figure 26: Detailed use cases for the Federated Machine Learning plugin. 44

7

Figure 27: Environment system model. ... 47

Figure 28: Dataset Facet. ... 62

Figure 29: Pricing Facet. .. 63

Figure 30: Environmental Facet. ... 63

Figure 31: Privacy and Usage Control Facet. ... 64

Figure 32: Data Processing Workflow Facet. ... 65

Figure 33: Contracting and Negotiation Facet. .. 66

Figure 34: System decomposition model. ... 66

Figure 35: Overall system collaboration model for dataset workflow. 67

Figure 36: Collaboration model for the "Describe Dataset" process. 67

Figure 37: Collaboration model for the "Publish Dataset" process. 68

Figure 38: Collaboration model for the "Define Data Processing Workflow" process. 68

Figure 39: Collaboration model for the "Find Relevant Datasets" process. 69

Figure 40: Collaboration model for the "Verify DPW against various aspects" process. 69

Figure 41: Collaboration model for the "Negotiate Terms and Establish Contract" process. ... 70

Figure 42: Collaboration model for the "Process Dataset" process. 70

Figure 43: Collaboration model for the "Post Process Dataset" process. 71

Figure 44: UPCAST technical architecture. ... 80

Figure 45: UPCAST alternative technical architecture. .. 82

Figure 46: Roles and Stakeholders for the Biomedical pilot. .. 83

Figure 47: Legend of the use case colours used for the pilot reference use cases. 83

Figure 48. Top-level use case model for the Biomedical pilot. ... 84

Figure 49. Establishing collaboration between NHRF and external resource providers. 85

Figure 50. Integrate and harmonise biomedical data. .. 86

Figure 51. Sharing biomedical data... 87

Figure 52: Business to Systems Mapping Model for the Biomedical pilot. 88

Figure 53: Deployment scenario for the Biomedical pilot. .. 89

Figure 54: Roles and stakeholders for the Public Administration pilot. 90

Figure 55. Top-level use case for the Public Administration pilot. 90

Figure 56. Integrate and aggregate public administration data. .. 91

Figure 57. Share public administration data. ... 92

Figure 58: Business to Systems Mapping Model for the Public Administration pilot. 92

Figure 59: Deployment model for the Public Administration pilot. .. 94

Figure 60: Roles and Stakeholders for the Health and Fitness pilot. 95

Figure 61: Top-level use case model for the Health and Fitness pilot. 96

Figure 62: Establish collaboration with trainees. ... 96

Figure 63: Bundle and prepare datasets. ... 97

Figure 64: Trade data. .. 97

Figure 65: Business to Systems Mapping Model for the Health and Fitness pilot. 98

8

Figure 66: Deployment model for the Health and Fitness pilot. .. 99

Figure 67: Roles and stakeholders for the Digital Marketing JOT pilot. 100

Figure 68. Top-level use case model for the Digital Marketing JOT pilot. 101

Figure 69. Define service requirements with Resource Consumer. 101

Figure 70. Prepare datasets. .. 102

Figure 71. Share data with Resource Consumer. ... 103

Figure 72: Business to Systems Mapping Model for the Digital Marketing JOT pilot. 104

Figure 73: Generic architecture for the TO-BE scenario (Figure 10 from D1.1). 104

Figure 74: Deployment model for the Digital Marketing JOT pilot. 105

Figure 75: Roles and stakeholders for the Digital Marketing Cactus pilot. 106

Figure 76. Top-level use case model for the Digital Marketing Cactus pilot. 107

Figure 77. Obtain data from clients and competitors. .. 107

Figure 78. Share data with clients and competitors. .. 108

Figure 79: Business to Systems Mapping Model for the Digital Marketing Cactus pilot. 109

Figure 80: Deployment model for the Digital Marketing Cactus pilot. 109

LIST OF TABLES
Table 1: Requirements for the Resource Specification plugin. ... 48

Table 2: Requirements for the Data Processing Workflow plugin. .. 49

Table 3: Requirements for the Privacy and Usage Control plugin. .. 50

Table 4: Requirements for the Pricing plugin. ... 52

Table 5: Requirements for the Valuation plugin. .. 54

Table 6: Requirements for the Environmental Impact Optimiser plugin. 54

Table 7: Requirements for the Resource Discovery plugin. .. 55

Table 8: Requirements for the Negotiation and Contracting plugin....................................... 56

Table 9: Requirements for the Integration and Exchange plugin. .. 57

Table 10: Requirements for the Secure Data Delivery plugin. ... 58

Table 11: Requirements for the Monitoring plugin... 59

Table 12: Requirements for the Federated Machine Learning plugin. 60

Table 13: System-wide requirements. .. 61

Table 14: Interface specification for the Resource Specification plugin. 71

Table 15: Interface specification for the Data Processing Workflow plugin........................... 72

Table 16: Interface specification for the Privacy and usage Control plugin. 73

Table 17: Interface specification for the Pricing plugin. .. 74

Table 18: Interface specification for the Valuation plugin. ... 74

Table 19: Interface specification for the Environmental Impact Optimiser plugin. 75

Table 20: Interface specification for the Resource Discovery plugin. 76

9

Table 21: Interface specification for the Negotiation and Contracting plugin. 76

Table 22: Interface specification for the Integration and Exchange plugin. 77

Table 23: Interface specification for the Monitoring plugin. ... 77

Table 24: Interface specification for the Federated Machine Learning plugin. 78

Table 25: Acronyms. .. 111

10

1 INTRODUCTION

1.1 UPCAST Project

UPCAST, Universal Platform Components for Safe Fair Interoperable Data Exchange,

Monetisation and Trading, provides a set of universal, trustworthy, transparent and user-

friendly data market plugins for the automation of data sharing and processing

agreements between businesses, public administrations and citizens. Our plugins will

enable actors in the common European data spaces to design and deploy data exchange

and trading operations guaranteeing:

• automatic negotiation of agreement terms;
• dynamic fair pricing;
• improved data-asset discovery;

• privacy, commercial and administrative confidentiality requirements;

• low environmental footprint;
• compliance with relevant legislation;

• ethical and responsibility guidelines.

UPCAST will support the deployment of Common European data spaces by

consolidating and acting upon mature research in the areas of data management,

privacy, monetisation, exchange and automated negotiation, considering efficiency for

the environment as well as compliance with EU and national initiatives, AI regulations

and ethical procedures. Four real-world pilots across Europe will operationalise a set of

working platform plugins for data sharing, monetisation and trading, deployable across

a variety of different data marketplaces and platforms, ensuring digital autonomy of data

providers, brokers, users and data subjects, and enabling interoperability within

European data spaces. UPCAST aims at engaging SMEs, administrations and citizens

by providing a transferability framework, best practices and training to endow users in

order to deploy the new technologies and maximise impact of the project.

Work package 1, UPCAST concept and MVP definition, addresses the following project

objectives:

• Objective 1: Apply models and standards to easily specify data processing
requirements in the context of common European data spaces,

• Objective 4: Enable interoperability of data sharing across different entities,
platforms and marketplaces,

• Objective 5: Provide a legal and ethical framework for automated contracts, and,

• Objective 8: Pilot and evaluate the platform in Real Market Dataspaces.

These project objectives will be achieved by WP1 through the following sub-objectives:

• Sub-objective 1.1 Establish the vision and direction for the project by defining a
Minimum Viable Product (MVP) and agreeing the technical and pilot
requirements and usage scenarios to achieve sustainability of the UPCAST set
of tools. A methodology to define the requirements and the MVP will be used to
stir up the process.

11

• Sub-objective 1.2 Define the data model and vocabularies for expressing the
UPCAST workflows, preferences and other features based on extending
existing efforts in GAIA-X and IDS.

• Sub-objective 1.3 Provide a legal framework based on European and National
regulations, best practices and ethics guidelines for UPCAST.

• Sub-objective 1.4 Define the UPCAST system architecture using best practices
on architecture specification in compliance with the data spaces, along with
legal and ethical aspects.

1.2 Purpose of the Document

This document aims to provide the technical design of the initial UPCAST architecture

and the definition of the MVP to be demonstrated in the selected business cases in

UPCAST pilots. It documents the technical design of the UPCAST architecture and pilot

demonstrations using technical models and specifications. It also describes the initial

version of vocabularies and data models to be used by the UPCAST plugins and the pilot

demonstrations.

This document is accompanied by a .qea/XMI file that contains the architectural models

represented in UML and BPMN diagrams used in this document, and a website that

documents the UPCAST vocabularies with available download serialization in a number

of formats (such as .owl, .ttl).

This document serves as the technical specification and guideline for the development

of the MVP and the pilot business cases to be implemented in WP2-WP5.

1.3 Scope of the Document

This document is based on deliverable D1.1 Project Concept Requirements Setup, and

describes the result of an iterative process that elaborates and refines the MVP

definition, the technical design of the UPCAST architecture, and the design of the

UPCAST pilots. It gathers input from the following tasks:

• Task 1.1 (MVP Definition and Requirements for the Data Value Chain): definition

of the main features to be delivered in the UPCAST MVP;

• Task 1.2 (Pilot Design and Functionalities): the final pilot design and

functionalities based on elaboration of the initial pilot use cases and

requirements;

• Task 1.3 (Vocabulary and Data Model): the initial input related to the vocabulary

and data model to be used in UPCAST MVP and pilots.

• Task 1.5 (UPCAST Tools Design and Architecture): the initial UPCAST

architecture and interface to develop the MVP.

D1.2 documents the UPCAST pilot design and functionality using technical models and

diagrams based on the input from UPCAST deliverable D1.1. For an overview of a high-

level description of the pilots, their main technical challenges, datasets and

requirements, kindly refer to D1.1.

1.4 Structure of the Document

The remainder of the document is organised as follows: Chapter 2 describes ARCADE

framework and how it is used to design and document the initial UPCAST architecture.

Chapter 3 provides a high-level description of the MVP and its main features from a user

12

journey perspective. Chapter 4 describes the initial UPCAST conceptual and technical

architecture as well as vocabularies. Chapter 5 to Chapter 9 describe the design and

functionality of each UPCAST pilot using the views defined in ARCADE framework. These

include the roles and stakeholders involved, the reference use cases representing pilot

functionality, the UPCAST plugins involved to implement the pilot use cases, and pilot

implementation plans. Finally, Chapter 10 concludes the deliverable and proposes future

work.

13

2 ARCADE FRAMEWORK
The UPCAST architecture design and description is based on the ARCADE framework1.

The ARCADE framework is an architecture description framework based on IEEE

standard for system architecture specifications, and it is used in UPCAST to create a

holistic system architecture using a set of interconnected viewpoints. Each viewpoint

specifies a specific view of the architecture using models describing different aspects

regarding the structure and behaviour of the system as illustrated in Figure 1 (the middle

box). The ARCADE framework provides guidance on using the different viewpoints,

views and models to describe the system architecture. It is a flexible approach, meaning

that not all the views and models must be used, but they can be selected according to

the context and purpose of the architecture design.

ARCADE defines the following views with respective models:

• Context View: describe the various aspects of the target system's environment,

including its stakeholders, intended functionality described in use cases,

business processes, the scope of the target system and its environment, and the

mapping from the business aspects to the target system.

• Requirements View: document all specific requirements related to the target

system.

• Component View: identify and document physical or logical components

regarding their data, interfaces and functionality.

• Distribution View: describe the logical distribution of software and hardware

components.

• Realisation View: describe the realisation of the system with its subsystems,

including their deployment.

Figure 1: Mapping between D1.2 content and ARCADE framework.

UPCAST uses the ARCADE framework to model the realisation of the UPCAST MVP

including the UPCAST architecture and the demonstrating pilots. As part of the

preparation of D1.1, an initial version of the Context View, Requirements View and

1 http://arcade-framework.org/

http://arcade-framework.org/

14

Component View were created to provide a contextual basis for relevant requirements

specification. These views documented the following: As-is and to-be use case models

of pilots developed in interviews with pilots; pilot user stories and requirements; plugin

requirements. Taking these views as a starting point, D1.2 completes the initial

architectural models by instantiating and elaborating the Component View and

Distribution View. During this process, the 3 views (Context, Requirement and

Component) developed in connection with D1.1 are further elaborated, updated and

extended. Furthermore, the pilot design is also elaborated using selected views of the

ARCADE framework as illustrated in Figure 1.

The following describes the architecture design and MVP Implementation process with

the resulting documentation from different steps (see Figure 1). The bold text in

parentheses refers to the ARCADE models used in D1.2 as the result of each step. The

process is iterative, meaning that each step may be done in several rounds and does not

strictly follow the order of this bullet list.

1. Define the generic roles and stakeholders for the UPCAST plugins and pilots

(Roles and Stakeholders in Section 4.1 for plugins and Section 5.1, 6.1, 7.1, 8.1

and 9.1).

2. Harmonise and prioritise plugin requirements (Requirements View in Section

4.4). These plugin requirements can be traced back to the pilot requirements and

user stories.

3. Define the generic UPCAST plugin functions that are needed to satisfy the

requirements in the pilots (Reference Use Cases in Section 4.2). The goal is to

specify generic functionality, therefore, the internal functionality (functions and

actors) needed to support the pilot objectives is considered but not modelled

explicitly.

4. Assess, harmonise and prioritise functions associated with each plugin to

establish methods (functions) the plugin should offer (Reference Use Cases in

Section 5.2, 6.2, 7.2, 8.2 and 9.2).

5. Determine which functionality should be within and outside of UPCAST scope

(Environment Systems Model in Section 4.3).

6. Define interfaces (methods/services and input/output) of components needed

to realise the UPCAST plugins (Component View in Section 4.8).

7. Define the UPCAST technical architecture and specify how the plugins will be

deployed and interacted (Technical Architecture in Section 4.9).

8. Define which plugins will be used to realise pilot use cases (Business to System

Mapping Model in Section 5.3, 6.3, 7.3, 8.3 and 9.3).

9. Specify how UPCAST plugins will be deployed/implemented in the pilots (System

Distribution Model–- Pilot Implementation Plan in Section 5.4, 6.4, 7.4, 8.4 and

9.4).

15

3 MVP DEFINITION
UPCAST provides support for the management, negotiation, and exploitation of

resources through a set of plugins that can be installed in Data Marketplaces or other

data platforms that can mediate data transactions between providers and consumers.

A resource can be a dataset, a data operation or an artefact (such as a machine learning

model).

The UPCAST Minimum Viable Product (MVP) is an implementation of the minimum

functionality of the UPCAST plugins (described in Section 4.2) that satisfies the

requirements prioritised and selected based on the pilot needs and project vision. The

MVP will serve to gather valuable feedback for further development.

In this section, we describe the MVP functionality from a user journey point of view.

Figure 2 illustrates the core functionality that is included in the UPCAST MVP as a set of

functions performed by or provided to either the Resource Provider, the Resource

Consumer, or in some cases both roles. The remaining part of the report will describe in

detail how the functionality is offered by the UPCAST Plugins (Context View and

Component View), how the UPCAST Plugins will be deployed in a technical infrastructure

(UPCAST technical architecture), and how this functionality will be implemented in the

UPCAST Pilots (Pilot Implementation Plan).

Figure 2: Core functionality included in the UPCAST MVP. The activities included in the MVP are realised by
means of the UPCAST Plugins2 except for "Publish resource" which is provided by a marketplace or broker
outside UPCAST.

2 Only the plugins that are the main entry points for each activity are illustrated in this figure. A

plugin may depend on other plugins to deliver the expected functionality. Such dependency is not

shown in the figure. In addition, the Negotiation and Contracting plugin is used by both Resource

Consumer and Resource Provider, but it is mainly triggered by Resource Consumer, therefore,

only the link to the Resource Consumer is shown in Figure 2.

16

In the MVP definition, we focus on datasets, but some plugins are applicable for other

types of resources. The UPCAST plugins are modules that can be deployed on a data

marketplace (or other data sharing platform) and offer defined functionality to

marketplace users through the marketplace. Plugins interact with each other through

well-defined APIs. The users, acting as resource providers or resource consumers, can

select a desired plugin from the marketplace and invoke the required functionality

through the provided user interface.

 Figure 2 shows a representative user journey with activities that involve as many UPCAST

plugins as possible. The upper part of Figure 2 illustrates the user journey of a resource

provider who wants to publish a dataset3 using UPCAST plugins. The preparation of a

dataset (collection of data, cleaning, and preprocessing) is outside the scope of

UPCAST. Therefore, the user journey starts with dataset annotation where the user

describes the resource using basic metadata and defines access and usage policies.

The user may also assign an energy profile to the resource and associate a price or price

range to the resource to facilitate its monetisation. A typical user journey utilising

UPCAST plugins is as follows:

RP1. Define metadata of resource: Using the Resource Specification plugin, user
creates a resource specification and annotates the resource with basic metadata
using UPCAST vocabulary and domain-specific vocabularies.

RP2. Provide privacy and usage control: Using the Resource Specification plugin, user
can further define the privacy and usage control policies in the resource
specification with the support from the Privacy and Usage Control plugin.

RP3. Estimate resource environmental cost: Using the Resource Specification plugin,
user can also create the energy profile for the resource with the resource
environmental cost suggested by the Environmental Impact Optimiser Plugin.

RP4. Suggest resource price: Using the Resource Specification plugin, the user can
assign a price to the resource manually, or with the support of the Pricing plugin, the
user will get a suggested price or price range of the resource and understand how
the price is formed.

RP5. Publish resource: User publishes the resource annotated with the resource
specification in a data marketplace or a data catalogue provided by a broker so that
others can discover the resource. This functionality is provided by a broker or
marketplace that is outside the scope of UPCAST.

The lower part of Figure 2 illustrates the journey of a resource consumer who wants to

make use of a dataset. This consumer journey starts with "Define Data Processing

Workflow" (RC1) which will utilise datasets from different providers. In some cases, the

user does not need to create a data processing workflow (DPW) and will start directly

from "Find relevant resources" (RC2). In this case, the DPW can be considered as

processing a single dataset. Furthermore, Federated Machine Learning (ML) activity is

handled by the Federated Machine Learning plugin. As Federated ML activity is

considered as a special type of data processing workflow, we do not address Federated

ML separately in the following process.

RC1. Define Data Processing Workflow: User defines a series of actions related to pre-
processing and processing of datasets using the Data Processing Workflow plugin.
A DPW model will be defined, the intended usage and the access and usage policies

3 In this section, we focus on datasets, but some plugins are applicable for other types of

resources.

17

for the DPW will be specified.

RC2. Find relevant resources: User discovers resources to include in the DPW by
searching or browsing a Dataset Catalogue or getting suggestions on relevant
resources using the Resource Discovery plugin.

RC3. Suggest dataset valuation: Using the Valuation plugin4, the user can get insight on
the value of data and understand how the data contributes to a certain task. This
can help the user make decisions regarding data monetisation.

RC4. Negotiate terms and establish contract: User negotiates with resource providers
regarding the terms of access, usage and pricing of the datasets. The result of the
negotiation is a contract that states the terms of access and usage, as well as the
pricing of the dataset under negotiation. User will get support from the Negotiation
and Contracting plugin to facilitate and automate part of the process. In particular,
legal assessment is performed to ensure compliance with legal requirements.

RC5. Transfer data safely: With the help of the Secure Data Delivery plugin, the dataset
contracted will be transferred securely to a trusted environment for its processing
by the user.

RC6. Integrate datasets: User integrates datasets from various resource providers for
the defined DPW using the Integration and Exchange Service. This service is not
considered a plugin, but rather a common data processing operation for which
UPCAST will offer a solution.

RC7. Execute data processing workflow: Using Data Processing Workflow, user starts
the DPW execution for the processing of the datasets subject to the terms of
access and usage policies that have been negotiated and agreed between the
provider and the consumer and are expressed in the negotiation contract.

RC8. Monitor execution of data processing workflow: The UPCAST Monitoring plugin
monitors the execution of the DPW and notifies user with non-conformance to the
DPW specification, such as any access or usage rule violated during the DPW
execution.

Some plugins are expected to be essential for performing the tasks for the user journey

in line with the UPCAST vision. These "must have" plugins are Resource Specification,

Privacy and Usage Control, Data Processing Workflow, Negotiation and Contracting, and

Monitoring, while the remaining plugins are optional due to, for example, the operations

associated with these plugins are optional in the user journey, or their functionality can

be provided by non-UPCAST software (e.g., discovery can be provided by marketplaces).

4 Note that in UPCAST, the Valuation plugin will be adapted to a specific use case in the Health

and Fitness pilot and will not be provided as a general purpose plugin.

18

4 INITIAL UPCAST ARCHITECTURE AND VOCABULARY

4.1 Roles and Stakeholders

We have defined UPCAST generic roles and stakeholders aligned with standards such

as IDSA RAM 4.05. Figure 3 shows these roles for the initial UPCAST architecture.

Figure 3: Roles and stakeholders for the initial UPCAST architecture.

In UPCAST, we focus on the Resource Consumer and Resource Provider roles. A

Resource Provider makes a resource available for others to use while a Resource

Consumer makes use of a provided resource. A resource can be a dataset, a data

operation or an artefact. Therefore, the Resource Consumer role is classified into Data

Consumer, Data Operations Consumer and Artefact Consumer, and the Resource

Provider role is classified into Data Provider, Data Operations Provider and Artefact

Provider. In line with the basic roles defined in IDSA RAM 4.0, a Data Provider is an actor

that makes datasets technically available for others to use, and a Data Consumer is an

actor that makes use of an available dataset. The other roles are not explicitly defined in

IDSA RAM, but they are an extension of IDSA RAM regarding general resources that can

be shared and exchanged in a data marketplace.

4.2 Plugin Reference Use Cases

This section describes the reference use cases of each UPCAST plugin.

5 https://docs.internationaldataspaces.org/ids-knowledgebase/v/ids-ram-4/layers-of-the-

reference-architecture-model/3-layers-of-the-reference-architecture-model/3-1-business-

layer/3_1_1_roles_in_the_ids

https://docs.internationaldataspaces.org/ids-knowledgebase/v/ids-ram-4/layers-of-the-reference-architecture-model/3-layers-of-the-reference-architecture-model/3-1-business-layer/3_1_1_roles_in_the_ids
https://docs.internationaldataspaces.org/ids-knowledgebase/v/ids-ram-4/layers-of-the-reference-architecture-model/3-layers-of-the-reference-architecture-model/3-1-business-layer/3_1_1_roles_in_the_ids
https://docs.internationaldataspaces.org/ids-knowledgebase/v/ids-ram-4/layers-of-the-reference-architecture-model/3-layers-of-the-reference-architecture-model/3-1-business-layer/3_1_1_roles_in_the_ids

19

4.2.1 Resource Specification

Figure 4: Top-level use case model for the Resource Specification plugin.

Use Case <<Define resource specification>>:

• Precondition/Trigger: User starts the plugin to provide specification of the

resource.

• Postcondition: A resource specification is created.

• Description: User starts the resource specification plugin, they can create a new

resource.

Figure 5: Detail use cases for the Resource Specification plugin.

20

Use Case <<Import UPCAST Vocabulary>>:

• Precondition/Trigger: A version of the UPCAST vocabulary in machine-readable

format (.ttl or .owl) exists. User triggers the use case.

• Postcondition: The UPCAST vocabulary is available to be used for specification

of datasets in use case “Define Metadata of Resource.”

• Description: User selects the version of the UPCAST vocabulary they want to

use in a .ttl or .owl file. After import, it is available for selection by the user in a

configuration section.

Use Case <<Import Domain-Specific Vocabulary>>:

• Precondition/Trigger: The Domain-Specific vocabulary in .ttl or .owl format exist.

Triggered by user.

• Postcondition: The Domain-Specific Vocabulary is available to be used for

specification of datasets.

• Description: User selects the Domain-Specific Vocabulary they want to import in

.ttl or .owl format. After importing the vocabulary is available to be used in the

“Define metadata” use case.

Use Case <<Define Metadata of Resource>>:

• Precondition/Trigger: At least one version of the UPCAST vocabulary needs to be

loaded in the system.

• Postcondition: A resource specification is created with at least the mandatory

attributes of the UPCAST vocabulary. (Optionally, attributes of the Domain-

specific-Vocabulary).

• Description: User creates a new resource and describes their metadata using

the attributes defined in the UPCAST Vocabulary, except those of access and

usage, policy and pricing, and user can also use the attributes defined in any

imported Domain-Specific Vocabulary.

Use Case <<Define Access and Usage policies of Resource>>:

• Precondition/Trigger: A resource specification with basic metadata exists.

• Postcondition: The input resource specification is augmented with access and

usage policies in the vocabularies.

• Description: User specifies the access and usage policies for the resource at

higher level. When the resource is a dataset, user will be able to specify fine

grained policies on attributes of the specification that describe the contents of

the dataset. E.g., metadata specifies the dataset has a column "Name", with

"Name" an entity in the Domain Specific Language (DSL). User can then express

21

access and usage policies referring to the "Name" column, e.g., "do not use for

commercial".

Use Case <<Assign Energy Profile to resource>>:

• Precondition/Trigger: The resource for which the profile will be assigned has

been specified with at least basic metadata.

• Postcondition: An Energy Profile is added to the resource specification.

• Description: User specifies metadata of the infrastructure on which the resource

runs or is located. The metadata is used as input to the Environmental Impact

Optimiser (EIO) plugin to estimate the energy consumption. This use case will

call the use case <<Perform dataset energy profiling>> of the EIO plugin. The

output of the EIO is added to the resource specification. The metadata differs

depending on if the resource is a dataset or a processing operation.

Use Case <<Associate price to resource>>:

• Precondition/Trigger: The resource for which the price will be assigned has been

specified with at least basic metadata.

• Postcondition: A price is added to the resource specification.

• Description: User may specify the price attribute (assumed to be in the UPCAST

vocabulary) manually. Alternatively, for dataset resources a user can send a

request to the pricing plugin (having as input the current description of the

resource) to get a price suggestion (Use Case <<Suggest resource price>> of

Pricing plugin). User may set the pricing attributes following the suggestion.

Use Case <<Generate resource profile/summary>>:

• Precondition/Trigger: The resource for which the profile/summary will be

assigned has been specified with at least basic metadata. The Dataset to be

profiled is assigned.

• Postcondition: A profile or summary is added to the resource specification.

• Description: User inputs the dataset, selects from a drop-down list the type of

profile/summary they want to generate. System generates the selected

profile/summary and adds it to the resource specification.

Use Case <<Define Abstract Resource Specification>>:

• Precondition/Trigger: None. Triggered by user or by Discovery and Integration

Plugins.

• Postcondition: An abstract resource specification is created.

• Description: The user wants to specify a resource that does not exist or is not

known yet (but they want), to either run a discovery task or define the target of

22

an integration. Abstract resource specifications use the same vocabulary as

concrete ones but have variables instead of instances in some variables. In a way

they are similar to queries. The steps to define an abstract specification are

similar to a concrete one, predicates from the Vocabulary are added to

specification, but variables or value ranges may be used instead of constants.

4.2.2 Data Processing Workflow

Figure 6: Top-level use case model for the Data Processing Workflow plugin.

Use Case <<Define data processing workflow>>:

• Precondition/Trigger: User wants to implement a service including resources

from third-parties.

• Postcondition: Machine- and human- readable DPW model available, or Machine-

and human- readable description of the resulting dataset (i.e., the product of the

DPW) or artefact (such as a report or a ML model).

• Description: The user specifies a data processing workflow offering some

desired functionality. Specifically, a RC defines intended data-centric processes

alongside specific access and usage intentions and/or requirements through an

easy-to-use no-code design and editing UI. Moreover, the user may define access

and usage control constraints at the level of the whole DPW, in case the latter is

planned to be advertised as a Resource to be used in other DPWs.

Figure 7: Detail use cases for the Data Processing Workflow plugin.

23

Use Case <<Define DPW>>:

• Precondition/Trigger: User wants to implement a service including resources

from third-parties. Resources can be either already known/discovered or abstract

resources from third-parties that will be dynamically discovered and selected

according to specific criteria.

• Postcondition: Machine- and human- readable DPW model available

• Description: The user specifies a data processing workflow offering some

desired functionality by leveraging its own resources (e.g., data apps and

datasets) or resources discovered and bought in an AppStore or Marketplace

through an easy-to-use no-code design and editing user interface (UI). Each step

of the DPW is defined by specifying the data processing operation to be executed

over a specific abstract or concrete resource. For resources that are not yet

discovered, user describes the requirements that resources to be discovered

have to cover, so as for concrete resources to be mapped to the abstract

specifications submitted as queries by the potential resource consumer (cf.

Section 4.2.1 use case <<Define Abstract Resource Specification>>).

Use Case <<Define DPW intended usages>>:

• Precondition/Trigger: User wants to implement a service including resources

from third-parties.

• Postcondition: Machine- and human- readable DPW model available.

• Description: The user specifies the purposes that the DPW serves and the actor

entities that may initiate the DPW. At task level, the user defines the processing

operations that will be executed over specific resources. The user may also

define constraints (part of their intentions) over the said operations and

resources, e.g., for selecting resources satisfying specific criteria.

Use Case <<Define access and usage policies over workflows>>:

• Precondition/Trigger: User wants to implement a service including resources

from third-parties, user wants to describe a DPW as a Resource to be advertised.

• Postcondition: Machine- and human- readable description of the resulting

dataset (i.e., the product of the DPW) or artefact (such as a report or a ML model).

• Description: The user defines access and usage control constraints at the level

of the whole DPW, in case the latter is planned to be advertised as a Resource to

be used in other DPWs.

Use Case <<Execute data processing workflow>>:

• Precondition/Trigger: A DPW specification is generated. Negotiation and

contracting process has concluded. User triggers the DPW execution.

• Postcondition: The DPW specification starts execution and can be monitored.

• Description: The DPW specification is compiled into an executable model and

instructions are inserted into the model so that monitoring messages can be sent

to the Monitoring plugin.

24

4.2.3 Privacy and Usage Control

Figure 8: Top-level use case model for the Privacy and Usage Control plugin.

Use Case <<Provide privacy and usage control>>:

• Precondition/Trigger: We have a Resource Provider (RP) and a Resource

Consumer (RC) that are paired together by the data marketplace or some other

brokerage, to exchange data. In addition: a) RP’s constraints defined through

Resource Specification; b) RC includes RP’s resource in a DPW specification.

• Postcondition: a) RP’s constraints defined as Privacy and Usage Control (PUC)

rules; b) RC’s PUC rules (i.e., organisation-specific and prescribed by the

applicable regulations) defined as PUC rules; c), any potentially applicable rules

addressing marketplace liability pertaining to it acting as a “data intermediation

service” 6 , also defined as PUC rules by the marketplace itself; d) Conflicts

between RP’s constraints and RC’s intentions identified; e) RC received

authorisation decision/transformed request for accessing a specific resource on

the basis of the declared intentions, own ruleset and RP’s constraints.

• Description: Upon Resource Specification the RP user defines constraints on

their resources which are in turn translated into PUC rules leveraging the UPCAST

and domain-specific vocabularies. The RC user defines on the one hand their

intentions via the DPW specification, as well as any possible organisation-

specific access and usage control rules and rules prescribed by applicable

regulations (e.g., GDPR). Thereafter, conflict identification follows between RP

constraints, RC intentions and internal rules and derivation of authorisation

decisions becomes possible.

6 https://data.consilium.europa.eu/doc/document/PE-85-2021-INIT/en/pdf

https://data.consilium.europa.eu/doc/document/PE-85-2021-INIT/en/pdf

25

Figure 9: Detail use cases for the Privacy and Usage Control plugin.

Use Case <<Transform Resource Provider constraints to privacy and usage control

rules>>:

• Precondition/Trigger: a) RP’s constraints defined through Resource

Specification (see Use Case <<Define Access and Usage policies of Resource>>

in Resource Specification plugin); b) RC includes RP’s resource in a DPW

specification.

• Postcondition: RP’s constraints defined as PUC rules so that they can be

compared to RC’s intentions in the context of the negotiation process.

• Description: RP’s constraints reflected in the respective licences (generated upon

Resource Specification) are translated into the underlying semantic policy

language for the negotiation to take place. This process is transparent to RP.

Use Case <<Define rules for Resource Consumer>>:

• Precondition/Trigger: RC includes RP’s resource in a DPW specification.

• Postcondition: RC’s access and usage control rules (i.e., organisation-specific

and prescribed by the applicable regulations, as well as DPW-specific) defined as

PUC rules.

• Description: The user may specify access and usage control rules over the

specified DPW (with the DPW and/or its artefacts constituting potential

resources for other DPWs). Additionally, the user defines possible organisation-

specific access and usage control rules, along with rules prescribed by applicable

regulations (e.g., GDPR). It is noted that access and usage intentions regarding a

resource included in the DPW will be also translated into PUC rules, for conflict

identification and negotiation to take place.

26

Use Case <<Manage Rules>>:

• Precondition/Trigger: RC wants to manage their internal ruleset, RC includes RP’s

resource in a DPW specification.

• Postcondition: RC’s access and usage control rules (i.e., organisation-specific

and prescribed by the applicable regulations) defined as PUC rules.

• Description: The user may create, update and delete access and usage control

rules. Management of generic organisation-specific and legislation-related rules

will be provided by a dedicated UI. Management of rules includes conflict

resolution and rules merging, i.e., mechanisms for the elimination of deprecated

policies (i.e., overridden by other policies), as well as identification of conflicts

between RP access and usage constraints and RC access and usage intentions

and subsequent suggestions for conflict resolution. It is noted that DPW-specific

access and usage intentions referring both to a specific resource included in the

DPW and the whole DPW may be managed directly at the level of the DPW

modelling (through DPW specification UI).

Use Case <<Identify conflict between Resource Provider constraints and Resource

Consumer intentions>>:

• Precondition/Trigger: RC includes RP’s resource in a DPW specification.

• Postcondition: Conflicts between RP’s constraints and RC’s intentions identified.

• Description: RC access and usage intentions along with organisation-specific

and legislation-related rules are checked against RP access and usage

constraints and possible conflicts are identified and presented to user in an

intuitive and user-friendly way (cf. “Present and resolve negotiation conflicts” use

case in Section 4.2.8). This may also include suggestions for conflict resolution

to be taken into consideration during the negotiation process.

Use Case <<Access and usage decision making>>:

• Precondition/Trigger: RC includes RP’s resource in a DPW specification.

• Postcondition: RC received authorisation decision/transformed request for

accessing a specific resource on the basis of the declared intentions, own ruleset

and RP’s constraints.

• Description: In case that no conflicts leading to access and usage request

rejection between RP access and usage constraints and RC intentions have been

identified, the user receives the authorisation decision for their request for a

specific resource (expressed by means of their intentions), that may be a) accept

the request as is, possibly prescribing/forbidding the execution of other actions

in the future; b) accept a transformed version of the original request, by means

of selection, projection and change of state of fields, possibly

prescribing/forbidding the execution of other actions in the future.

Use Case <<Provide Policy Decision Point functionality>>:

• Precondition/Trigger: Other services/plugins require Policy Decision Point (PDP)

functionality.

• Postcondition: Authorisation decision/transformed request for accessing a

specific resource generated.

27

• Description: Privacy and Usage Control Plugin provides advanced PDP

functionality to other services or plugins (e.g., in the context of DPW execution

and /or monitoring). It provides for request transformation where possible;

instead of simply allowing or denying an incoming access/usage request, it

allows request transformation (e.g., allow access to/usage of parts of the

requested data) and/or prescribe/forbid the execution of subsequent actions.

4.2.4 Pricing

Figure 10: Top-level use case model for the Pricing plugin.

Use Case <<Suggest resource price>>:

• Precondition/Trigger: Resource Specification with basic metadata is defined.

The user sends a request to get a price suggestion. Users of the pricing plugin

can be, for example, data providers interested in setting the price of their data

products or data consumers interested in obtaining a reference of the price of a

certain data product they are willing to acquire.

• Postcondition: A price or price range for the resource is provided. Additionally,

similar resources may be suggested.

• Description: Plugin users can use the plugin to get a suggested price or price

range for selected resource using static or dynamic pricing models. Users may

also get explanation of the estimated price. Additionally, they can get

suggestions on similar resources.

28

Figure 11: Detail use cases for the Pricing plugin.

Use Case <<Estimate Price / Price Range of a Dataset>>:

• Precondition/Trigger: Resource Specification with relevant metadata is defined.

The user sends a request to get a price suggestion for this dataset.

• Postcondition: User gets a specific range of prices for a dataset through the

static or dynamic pricing model(s).

• Description: This use case represents the core functionality of the plugin, which

is to suggest price or price range for datasets using static or dynamic pricing

models. The use case thus is extended by the use cases <<Suggest price with

static pricing model>> and <<Suggest price with dynamic pricing model>>, which

use different mechanisms and inputs to provide the estimation.

Use Case <<Suggest price with static pricing model>>:

• Precondition/Trigger: Resource Specification with basic metadata is defined.

The user sends a request to get a price suggestion for this resource.

• Postcondition: User gets a specific range of prices for a dataset and the static

pricing model(s) available.

• Description: Plugin users will be returned a specific range of prices of data

products in accordance with the description and metadata attributes they submit

as inputs. The estimation will be calculated based on regression models fed with

market information about data products currently being commercialized in real

data marketplaces.

Use Case <<Suggest price with dynamic pricing model>>:

29

• Precondition/Trigger: Resource definition with UPCAST vocabulary exists,

marketplace characteristics are provided. The user sends a request to get a price

suggestion for this resource.

• Postcondition: Fixed or range of market-driven prices of a dataset available.

• Description: The dynamic pricing models will return a fixed or range of market-

driven prices of a dataset, potentially using static price estimations for

bootstrapping, and incorporating market characteristics, based on marketplace

interactions.

Use Case <<Provide explanation of estimated prices>>:

• Precondition/Trigger: The pricing model(s) and dataset metadata are defined.

The user sends a request to get an explanation of the features that are affecting

the price suggestion for this dataset.

• Postcondition: The relevant features or attributes contributing to the suggested

price of the dataset and the degree to which each feature contributes (as a

percentage) to the provided range of prices are provided.

• Description: Plugin users may ask for further explanation of a certain estimation
provided by the plugin to know what the most relevant features contributing to
the price of their data are. For that purpose, the plug-in will return an estimation
of price for the description and metadata attributes provided by the user, and a
list of the metadata features and / or group of features and their contribution to
that estimation (a percentage or an explanatory real number). The end user will
be able to graphically visualise the explanation.

Use Case <<Suggest similar resources>>:

• Precondition/Trigger: Resource definition with UPCAST vocabulary exists. The

user sends a request to get similar data products to this resource in the market.

• Postcondition: The user will be provided information of data products found in

commercial data marketplaces that are closer to the resource specified as input.

• Description: Plugin users may ask for data products that are like the resource

described as an input and comply with any metadata attribute constraints stated

in the request. The output would be a list of data products in the database that

conform to those characteristics including, when available, their price.

4.2.5 Valuation
Even though the methodology of the valuation plugin will be designed to be generic and

applicable to a wide range of use cases, its design and its implementation will be

restricted to the scope of the Health and Fitness use case.

30

Figure 12: Top-level use case model for the Valuation plugin.

Use Case<<Suggest dataset valuation>>:

• Preconditions/Triggers: Data is available from data provider(s). The user (data

marketplace, data aggregator or data consumer) has defined the criteria and

methods to valuate data (e.g., improving the accuracy of a model, selecting data

with higher spatial or temporal entropy, comparing the similarity to a validation

set).

• Postconditions: Data valuation, meaning the relative value of data sources / data

from different providers, is calculated, and further information is provided for the

output to be analysed.

• Description: This use case calculates Data Valuation (contribution of a selected

data to a given purpose) and gives insight on the provided value/contribution.

This can be used by data consumers to select which resources fit their purposes

(data selection) or by data marketplaces to distribute rewards among data

providers that contributed data to a transaction involving a combination of their

data.

Figure 13: Detail use cases for the Valuation plugin.

Use Case<<Set up for Data Valuation>>:

• Preconditions/Triggers: Data is available from the data providers. Data conforms

to the suggested criteria and methods of evaluation (e.g., data can be used by

the model or valuation functions provided by data consumers). All methods are

31

defined, and all the data required to run those methods are available (e.g., a

validation set to test the output, if applicable).

• Postconditions: Validity of data is confirmed.

• Description: This use case sets up the data in the right form so that Data

Valuation can be calculated.

Use Case <<Calculate Data Valuation>>:

• Preconditions/Triggers: Use case <<Set up for Data Valuation>> is done. A

particular data subset is selected for valuation. The user (data marketplace, data

aggregator or data buyer) has defined the criteria and methods to valuate data

(e.g., data can be used by the model or valuation functions provided by data

consumers).

• Postcondition: The contribution of the selected data is calculated according to

the criteria defined by users.

• Description: Data Valuation is calculated for a selected data subset based on the

predefined methods.

Use Case <<Analyse Data Valuation>>:

• Preconditions/Triggers: Use case <<Calculate Data Valuation>> is done.

• Postconditions: Statistics and explanation of the valuation will be provided for

data providers to know more information about the reasons why their data was

highly valuable or less valuable than others.

• Description: Data Valuation provides insight on what is the value of the data

provider, based on the dataset provided. For this functionality to be useful, it must

be adapted to the specific use case.

4.2.6 Environmental Impact Optimiser

Figure 14: Top-level use case model for the Environmental Impact Optimiser plugin.

Use Case <<Estimate resource environmental cost>>:

32

• Precondition/Trigger: The vocabulary and resource specification are complete

with the plugin-specific requirements and there is access to the infrastructure

where datasets are created, stored, modified and processed.

• Postcondition: Estimated environmental impact of a dataset and its processing

through a data workflow provided.

• Description: The environmental impact optimiser will include efficient AI models,

monitoring and visualisation tools to estimate the environmental impact of a

data processing workflow, by profiling datasets based on their potential impact

and calculating energy metrics such as estimated carbon footprint.

Figure 15: Detail use cases for the Environmental Impact Optimiser plugin.

Use Case <<Perform dataset energy profiling>>:

• Precondition/Trigger: Resource definition with UPCAST vocabulary, hardware

information, set of standard operations defined.

• Postcondition: The estimated energy efficiency metrics provided, which are

aggregated to create the energy profile.

• Description: The environmental impact optimiser will estimate the energy

consumption and intensity of a resource based on its metadata and hardware

information where the resource is created, stored or processed. This will be used

to create an energy profile for each resource.

Use Case <<Generate energy consumption metrics for processes>>:

• Precondition/Trigger: Access to hardware infrastructure, set of standard

operations defined.

• Postcondition: Actual power consumption of the processes provided.

• Description: The environmental impact optimiser will generate energy

consumption metrics of processes applied to the resource in the data processing

workflow and aggregate the energy consumption.

33

Use Case <<Provide explainability of energy profile>>:

• Precondition/Trigger: Energy profile, dataset metadata exist.

• Postcondition: The features contributing to the assigned energy profile of the

dataset available.

• Description: Using explainable AI (XAI) techniques, the end user will obtain

transparent feedback on the algorithm’s decision to assign a particular energy

profile to a dataset.

4.2.7 Resource Discovery

Figure 16: Top-level use case model for the Resource Discovery plugin.

Use Case <<Find relevant resource>>:

• Precondition/Trigger: Resource catalogue includes resources specified in the

UPCAST vocabulary. The consumer triggers the use case by asking for

resources.

• Postcondition: relevant resources identified.

• Description: a consumer may find relevant resources through browsing for

resources, searching for resources and discovery of related or recommended

resources.

Figure 17: Detail use cases for the Resource Discovery plugin.

34

Use Case <<Search for resources>>:

• Precondition/Trigger: Resource catalogue contains resources specified by the

UPCAST vocabulary. The consumer triggers the action by sending a search

request to the plugin.

• Postcondition: The search is logged.

• Description: The consumer initiates a search by inputting a search text. Upon

receiving the search request, the system triggers a comprehensive search within

the specified resources. As a result, the user is presented with a well-organised

and relevant list of resources that matches their search criteria.

Use Case <<Browse for resources>>:

• Precondition/Trigger: Resource catalogue includes resources specified in the

UPCAST vocabulary. The consumer triggers the action by sending a request to

retrieve a list of resources.

• Postcondition: Resource found/not found.

• Description: The consumer is provided with a curated list of resources through a

sophisticated faceted search request. The facets presented are tailored to the

underlying data model, offering the user an intuitive and efficient way to navigate

and explore the available resources.

Use Case <<Discover related/recommended resources>>:

• Precondition/Trigger: Resource catalogue includes resources specified in the

UPCAST vocabulary. A timer-based or an addition of a new dataset trigger the

creation/update of a relevant resources graph for each resource. The consumer

triggers the retrieval of resources with a request.

• Postcondition: Linked resources graph is created/updated.

• Description: The consumer initiates a discovery process by submitting an input

query or a resource. In response, a comprehensive list of highly relevant

resources is generated. To ensure up-to-date and dynamic results, the relevant

resources graph is continuously updated as new datasets arrive. This ensures

that users have access to the most current and valuable information available.

35

4.2.8 Negotiation and Contracting

Figure 18: Top-level use case model for the Negotiation and Contracting plugin.

 Use Case <<Negotiate terms and establish contract>>:

• Precondition/Trigger: RC has defined the DPW including resources owned by

third parties, RP has specified a resource and the corresponding access and

usage constraints, RP and RC have been matched for negotiation and agreement,

RP and RC have defined negotiation terms that consist of 1) sets of alternative

possible values for each field that they are willing to negotiate, and 2) rules that

describe the relationships between values across fields, GUIs to both sides are

provided.

• Postcondition: Negotiation outcome available, Machine-processable contract

available, Natural language contract available.

• Description: Once RP and RC have been matched for negotiation and agreement,

the plugin verifies the DPW against the RP constraints, RC intentions, legal

constraints and organisation-specific policies, pricing and environmental impact

constraints; in case no conflict has been identified (Use Case <<Identify conflict

between RP constraints and RC intentions>>, also conflicts related to

environmental impact and pricing), an agreement is automatically reached.

Otherwise, the system will highlight the conflicts, try to find a (set of) optimal

solutions, which will then be sent back to the RC. Following this, a negotiation

process will be initiated consisting in a sequence of counter-offers going back

and forth between RP and RC. The RC may choose one of the alternatives

presented by the system, manually edit the terms, or ask the system for a new

alternative. This counter-offer can then be accepted or changed by the RP. If the

RP accepts the counter-offer, an agreement is reached and the system can

proceed to contracting. Otherwise, the RP must provide a counter-offer, taking

the role of the RC in the previous step. This back and forth is repeated until the

RP accepts an offer. Ultimately, RP has the final say on whether the negotiation

goes through by either accepting, rejecting or sending another counter-offer. For

this purpose, RP defines through the negotiation and contracting plugin UI the

36

negotiation range for each statement in the resource specification, while RC may

also fine-tune the DPW specification in order to reflect their own negotiation

ranges. The case concludes with the generation of machine-readable and natural

language contracts, in case RP and RC have reached an agreement. In any case

the negotiation outcome is presented to both parties.

Figure 19: Detail use cases for the Negotiation and Contracting plugin.

Use Case <<Submit dataset request>>:

• Precondition/Trigger: RC has defined the DPW including resources owned by

third parties, RP has specified a resource and the corresponding access and

usage constraints, RP and RC have been matched for negotiation and agreement,

GUIs to both sides are provided.

• Postcondition: RP informed that their dataset is included in a DPW specified by

a RC.

• Description: Once RP and RC have been matched for negotiation and agreement,

RC submits a request for the matching resource to the RP.

37

Use Case <<Define negotiation ranges on top of usage constraints>>:

• Precondition/Trigger: RC has defined the DPW including resources owned by

third parties, RP has specified a resource and the corresponding access and

usage constraints, RP and RC have been matched for negotiation and agreement,

GUIs to both sides are provided.

• Postcondition: DPW updated with new RC and RP constraints.

• Description: RP defines through the negotiation and contracting plugin UI the

negotiation range for each statement in the resource specification, while RC may

also fine-tune the DPW specification in order to reflect their own negotiation

ranges. Users may define that certain parts of their contracts are non-negotiable.

Both RP and RC may define negotiation terms that consist of 1) sets of

alternative possible values for each field that they are willing to negotiate, and 2)

rules that describe the relationships between values across fields (e.g., set a

price for general use versus a lower price if only for research purposes).

Use Case <<Verify DPW against various aspects>>:

• Precondition/Trigger: RC has defined the DPW including resources owned by

third parties, RP has specified a resource and the corresponding access and

usage constraints, RP and RC have been matched for negotiation and agreement,

GUIs to both sides are provided.

• Postcondition: Negotiation conflicts identified and presented, valid DPW

alternatives identified and presented.

• Description: Once RP and RC have been matched for negotiation and agreement,

RC verifies the DPW against the RP constraints, RC intentions, legal constraints

and organisation-specific policies, pricing and environmental impact constraints.

DPW verification results in identification of conflicts and suggestions for conflict

resolution reflected in valid DPW alternatives.

Use Case <<Identify DPW valid alternatives>>:

• Precondition/Trigger: RC has verified DPW.

• Postcondition: Valid DPW alternatives identified.

• Description: DPW verification will come up with valid DPW alternatives if any.

These may include alternative processing purposes compliant with the RC

constraints, alternative actors authorised to perform the DPW tasks, access to

and usage of a subset or specific parts of a resource, access to and usage of

alternative types of resources with respect to the ones originally included in the

DPW.

Use Case <<Notify both parties>>:

• Precondition/Trigger: Negotiation process in progress.

• Postcondition: RP notified about negotiation conflicts and updated RC terms, RC

notified about negotiation conflicts and updated RP terms, Both parties visually

informed about the negotiation outcome.

• Description: Both parties get automatically informed every time the other party

has updated its terms, so as to appropriately proceed to further steps. Both

38

parties are informed about the negotiation outcome with all appropriate

visualisations.

Use Case <<Present and resolve negotiation conflicts>>:

• Precondition/Trigger: RC has verified DPW.

• Postcondition: Negotiation conflicts presented and resolved.

• Description: Possible conflicts found will be presented to the user, as well as valid

DPW alternatives resolving the conflicts, so that the user may in turn resolve the

conflicts either manually by editing the DPW or automatically by adopting any of

the valid DPW alternatives.

Use Case <<Negotiate terms>>:

• Precondition/Trigger: Negotiation process in progress.

• Postcondition: Accepted/rejected terms or counter-offer.

• Description: Users may accept, reject, or continue negotiations.

Use Case <<Generate contract>>:

• Precondition/Trigger: Negotiation process has successfully concluded.

• Postcondition: Negotiation outcome available, Machine-processable contract

available, Natural language contract available.

• Description: Once negotiation has concluded with terms accepted by both

parties, the machine-readable and the natural language (with boilerplate text)

contracts are generated.

Use Case <<Ensure compliance with legal requirements>>:

• Precondition/Trigger: Negotiation process has successfully concluded, Machine-

processable contract available, Automatically generated natural language

contract available.

• Postcondition: Natural language contract assessed and available.

• Description: Once negotiation has concluded with terms accepted by both parties

and the natural language (with boilerplate text) contract is generated, the latter

is assessed by DPOs and/or legal services of the involved entities; essentially,

this compliance assessment constitutes a human task complementing the

automatic DPW verification and transformation in order to ensure compliance

with legal requirements.

Use Case <<Sign contract>>:

• Precondition/Trigger: Negotiation process has successfully concluded, Contract

has been generated.

• Postcondition: Signed contract by both parties.

• Description: The machine-readable and the natural language (with boilerplate

text) contracts are communicated to both parties which proceed to signing the

contract.

39

4.2.9 Integration and Exchange

Figure 20: Top-level use case model for the Integration and Exchange plugin.

Use Case <<Integrate datasets >>:

• Precondition/Trigger: There is a DPW defined that includes data

integration/exchange as one of its components.

• Postcondition: User has access to an integrated solution as defined in the DPW.

• Description: User needs data that can be found in structured sources (this may

be in local sources or remote sources provided by a data provider). The user then

needs to integrate data as part of their DPW, which usually means answering

queries in a structured query language (such as SQL or SPARQL). There are at

least two approaches to answering these queries, each of which have different

advantages and disadvantages. This use-case is to provide users with systems

and algorithms that allow them to answer these queries.

Figure 21: Detail use cases for the Integration and Exchange plugin.

Use Case <<Semi-automatically create schema mappings between source and target

vocabularies>>:

• Precondition/Trigger: Data consumer specifies a source and a target. The source

and target vocabularies and schemas exist.

• Postcondition: Consumer is given a schema mapping between source and target.

• Description: The plugin takes the resource specification of the source, the

resource specification of the target as defined by the data consumer, and

40

automatically computes a (partial) mapping between source and target. This is

semi-automatic because the plugin will also provide an intuitive graphical

interface to allow the data consumer to define mappings in a more fine-grained

manner.

Use Case <<Integrate data from different data sources>>:

• Precondition/Trigger: Data consumer specifies a source(s) to integrate and

provides source to target mapping.

• Postcondition: Data Consumer is given access to integrated solution.

• Description: There are two distinct approaches to data integration/exchange:

forward chaining to infer new data (and construct a warehouse), and backward

chaining, where we rewrite queries in order to directly query data from each

source. The data consumer will be able to choose the approach that better suits

their needs, perhaps with some guidance from the plugin.

Use Case <<Integrate data through view materialisation>>:

• Precondition/Trigger: A DPW contains integration as one of its steps, data

consumer has specified sources to integrate and source to target mappings.

• Postcondition: New data is generated from the source, and the consumer is given

access to this data.

• Description: This use case generates new data from existing data according to

constraints defined in mappings. This infers new data from existing one, which

is then used to populate a data warehouse (view materialisation).

Use case <<Integrate data through query rewriting>>:

• Precondition/Trigger: A DPW contains integration as one of its steps, data

consumer has specified sources to integrate and source to target mappings.

• Postcondition: Data is queried directly from the sources, and the consumer is

given access to this data.

• Description: This use case rewrites queries (usually in a structured language

such as SQL or SPARQL) to extract the data directly from existing sources.

4.2.10 Secure Data Delivery

Figure 22: Top-level use case model for the Secure Data Delivery plugin.

41

Use Case <<Transfer data safely>>:

• Precondition/Trigger: Agreement for data sharing established. Triggered by

Resource Consumer using the Data Processing Workflow plugin.

• Postcondition: Data has been transferred according to the agreement in a secure

manner.

• Description: The plugin delivers data securely with secure data transfer protocols

and user-friendly interfaces that facilitate efficient data exchange.

4.2.11 Monitoring

Figure 23: Top-level use case model for the Monitoring plugin.

Use Case <<Monitoring Data Processing Workflow7>>:

• Precondition/Trigger: Dataset availability

• Postcondition: Persistence of all log monitoring data

• Description: Logging and persistence of data that have been collected through

the data processing workflow. Monitoring data that relate to all steps of the

involved UPCAST operations, including dataset specification, annotation with

usage and access policies, advertisement, discovery, negotiation, execution, are

logged.

7 Although the Monitoring plugin is mainly used for monitoring of the execution of a data

processing workflow by a Resource Consumer, the plugin can also be used for monitoring a

dataset execution by a Resource Provider.

42

Figure 24: Detail use cases for the Monitoring plugin.

Use Case <<Log basic DPW operations >>:

• Precondition/Trigger: A DPW operation has been carried out.

• Postcondition: A permanent record of the DPW operation has been completed.

• Description: Every event that is generated after each DPW operation is

permanently logged in a persistency store.

Use Case <<Notify non-conformance >>:

• Precondition/Trigger: Violation of access or usage policies.

• Postcondition: Alert notification generated.

• Description: An alert notification is generated if during execution of the data

processing workflow any access or usage rule is violated based on the collected

monitoring data and the policies that have been agreed between the dataset

provider and the consumer.

4.2.12 Federated Machine Learning

Federated Machine Learning is a special type of data processing. Three roles are

involved with specific focus in this context:

• Resource Provider (RP): An entity that offers machine learning models, datasets,

or computing resources to be utilised within the federated machine learning

process.

• Resource Consumer (RC): An entity that seeks to utilize resources provided by

Resource Providers to improve its local machine learning model.

• Data Marketplace Administrator (DMA): An administrator responsible for

managing the Data Marketplace, including onboarding Resource Providers and

Consumers, ensuring compliance, and facilitating transactions.

In order to provide policy-aware federated machine learning, this plugin consists of two

components that utilises the functionality of the Privacy and Usage Control plugin:

43

• Differential Privacy Component (DPE): A component responsible for applying

differential privacy techniques to data shared within the federated learning

process, ensuring privacy-preserving data aggregation.

• Policy Management Component (PMC): A component that enforces data sharing

policies and access controls within the federated learning process.

Figure 25: Top-level use case model for the Federated Machine Learning plugin.

Use Case <<Provide federated machine learning>>:

• Precondition/Trigger: User (in the role of Resource Consumer) wants to utilise

federated machine learning.

• The Resource Provider has made resources (e.g., model weights, data partitions)

available.

• Postcondition: Federated Machine Learning functionalities are provided to user.

Policy enforcement is ensured in the process.

• Description: This plugin allows for Data Marketplace Administrator to configure

the plugin to make it ready for use, and for Machine Learning users to train,

deploy, evaluate and update federated Machine Learning models.

44

Figure 26: Detailed use cases for the Federated Machine Learning plugin.

Use Case << Register as Resource Provider>>:

• Precondition/Trigger: The Data Marketplace is operational.

• Postconditions:

o The Resource Provider's profile is created on the Data Marketplace.

o Resource providers register their datasets on the data marketplace and

specify their data usage policies, including restrictions, consent

requirements, and the level of data sharing allowed.

o Policies are encoded in a machine-readable format including granular

access controls.

45

• Description: The Resource Provider registers on the Data Marketplace, providing

details about their available resources.

Use Case <<Ensure Policy Enforcement>>:

• Precondition/Trigger:

o The data marketplace is operational and accessible.

o Resource provider have uploaded/configured datasets to the

marketplace.

o Data usage policies have been defined and associated with datasets.

• Postconditions:

o Data access and usage are compliant with the predefined data usage

policies.

o The data marketplace enforces data usage policies during every step of

the federated learning process.

o Policies are enforced during data access, client selection, model

distribution, local training, model updates, aggregation, and model

deployment.

o Violations of data usage policies are detected and appropriately handled.

o Auditing and monitoring logs are maintained for compliance verification.

• Description: This outlines the interactions and processes involved in enforcing

data usage policies within a policy-aware federated machine learning plugin

operating within a data marketplace. The goal is to ensure that data sharing and

processing adhere to predefined policies to maintain data privacy, security, and

regulatory compliance.

Use Case << Browse Available Resources>>:

• Precondition/Trigger:

o The Data Marketplace is operational.

• Postconditions:

o The Resource Consumer has a list of available resources.

• Description: The Resource Consumer searches and browses available machine

learning resources on the Data Marketplace

Use Case << Request Resource Access>>:

• Precondition/Trigger:

o The Resource Consumer has an account on the Data Marketplace.

o Resources matching their needs are available.

46

o Resource Consumer raise a request for resource access.

• Postconditions:

o A request is sent to the selected Resource Provider.

• Description: The Resource Consumer requests access to specific machine

learning resources provided by a Resource Provider.

Use Case <<Configure Federated Machine Learning Plugin>>:

• Precondition/Trigger: The Federated ML plugin is installed and integrated into

the machine learning environment. Data sources or devices that will participate

in federated learning are registered.

• Postcondition: The Federated Machine Learning plugin is ready for use with the

specified configuration.

• Description: Administrators configure the Federated Machine Learning plugin,

specifying parameters, participant devices, and security settings.

Use Case <<Train Federated Machine Learning Model>>:

• Precondition/Trigger: The federated machine learning model is configured. Input

data sources have compatible data.

• Postcondition: A federated model is trained, and the aggregated data model is

available for further evaluation.

• Description: Users initiate federated model training, distribute model update to

participants devices and aggregate results.

Use Case <<Deploy Federated Machine Learning Model>>:

• Precondition/Trigger: A trained federated model is available. The production

environment is prepared to receive and serve the model.

• Postcondition: The federated model is deployed and serving predictions in the

production environment.

• Description: Administrators deploy the trained federated model to the production

environment, ensuring it is accessible for inference.

Use Case <<Evaluate Federated Machine Learning Model>>:

• Precondition/Trigger: A trained federated model is available. A test dataset is
prepared for evaluation.

• Postcondition: Evaluation metrics (e.g., accuracy, F1-score) are calculated, and
the model's performance is documented.

• Description: Data scientists and evaluators assess the performance of the
federated model using the test dataset.

47

Use Case <<Update Machine Learning Model>>:

• Precondition/Trigger: A trained federated model exists. New data and trained
local models are available.

• Postcondition: The federated model incorporates updates from participating
data sources, potentially improving model performance without exposing raw
data.

• Description: Resource Provider initiate model updates, securely transmitting their
local model updates to improve the federated model's performance.

4.3 Environment Systems Model

Figure 27 illustrates how the UPCAST plugins interface with its environment. It shows

how Resource Consumers and Resource Providers will use the plugins (represented by

their top-level use cases). The Resource Discovery plugin will utilise the resource

catalogue provided by marketplaces or brokers to find relevant resources, while the

Pricing plugin will obtain market prices of a resource from marketplaces. The Privacy

and Usage Control plugin will check the relevant rules and regulations defined by

Regulatory or legal authorities.

Figure 27: Environment system model.

48

4.4 Plugin Requirements

The plugin requirements defined in D1.1 have been harmonised and prioritised as a

result of elaboration and further work in D1.2. The priorities of some plugin requirements

have been adjusted in this process. Other changes to the requirements as documented

in D1.1 are summarised below.

• Added requirements for the Federated Machine Learning plugin as this is a new

defined plugin (REQ_FL_F_1 to REQ_FL_F_12 and REQ_FL_NF_1 to

REQ_FL_NF_7).

• Moved REQ_RD_F_10 (profile generation) and REQ_RD_F_11 (Sample/Preview

generation) from the Resource Discovery plugin to the Resource Specification

plugin (REQ_RS_F_9 and REQ_RS_F_10).

• Moved REQ_EE_F_8 (The energy profile should be used as a feature to influence

its price) from the Environmental Impact Optimiser plugin to the Pricing plugin as

REQ_PR_F_11).

The following tables (Table 1 to Table 12) show the updated plugin requirements, one

table per plugin. The requirement ID has the following convention:

REQ_<<plugin_abbreviation>>_<<requirement_type>>_<<requirement_number>>. For

<<requirement_type>>, F stands for functional requirements, NF stands for non-

functional requirements.

In addition, system-wide requirements (Table 13) are presented at the end of this

section. These system-wide requirements are relevant for the UPCAST ecosystem as a

whole.

Table 1: Requirements for the Resource Specification plugin.

ID Requirement Priority

REQ_RS_F_1 User must be able to describe a dataset using the

UPCAST vocabulary

Must have

REQ_RS_F_2 User must be able to describe a data processing

operation, either implemented as containerised software

or including human processing, using the UPCAST

vocabulary

Must have

REQ_RS_F_3 User must be able to validate that the resource

description generated with the plugin includes all fields

required by the specification of the UPCAST vocabulary.

Must have

REQ_RS_F_4 User must be able to upload a Domain-Specific

vocabulary for describing resources, and use it to add

further descriptions in the same way as the UPCAST

vocabulary (RS_F_1).

Must have

REQ_RS_F_5 User can import attributes output from the UPCAST

plugins “Privacy and Usage Control”, “Valuation and

Pricing” and “Environmental Impact” to augment the

description of a resource

Must have

49

REQ_RS_F_6 Define data operation custom parameter range Could have

REQ_RS_F_7 Manage catalogue of own resources Should have

REQ_RS_F_8 User must be able to visualise the description of a dataset

both in RDF form and in a suitable graphical form

Must have

REQ_RS_F_9 Given a dataset the plugin must be able to return a profile

of the dataset

Must have

REQ_RS_F_10 The plugin should provide functionality to provide users

with a reduced sample of the dataset

Could have

REQ_RS_NF_1 The tool Resource Specification plugin must be usable by

people with only a basic understanding of ontologies and

vocabularies

Must have

REQ_RS_NF_2 UPCAST vocabulary should align as much as possible

with existing vocabularies from Data Space community:

IDSA Information model and DCAT

Must have

REQ_RS_NF_3 Manage a joined vocabulary of at least 100 classes and

100 properties

Must have

REQ_RS_NF_4 Assuming knowledge of the values of the descriptive

properties, and excluding the time generating output from

the other UPCAST plugins, user must be able to complete

the description of a resource in 20 minutes or less.

Must have

Table 2: Requirements for the Data Processing Workflow plugin.

ID Requirement Priority

REQ_DPW_F_1 The definition of all entities involved in DPWs should be

supported at the required detail level, based on the

semantic foundation provided.

Must have

REQ_DPW_F_2 Usage preferences should be able to be suitably

formalized, providing adequate expressiveness

Must have

REQ_DPW_F_3 Access and usage constraints should be able to be

expressed in the process models in order to consistently

reflect compliant execution

Must have

REQ_DPW_F_4 The definition of conditional execution of tasks and

conditional data flow depending on context, purpose or

intra-workflow dependencies should be supported

Should have

REQ_DPW_F_5 The definition of the entity that performs a processing

step, but also the entity that initiates a DPW, should be

supported

Must have

REQ_DPW_F_6 The definition of the operations performed through a

data processing step should be supported

Must have

50

REQ_DPW_F_7 The definition of the data asset which is accessed or

upon which an operation is performed should be

supported

Must have

REQ_DPW_F_8 The definition of the data exchanged between

processing steps should be supported

Must have

REQ_DPW_F_9 DPW models should be able to accurately represent

cases of cross-domain data sharing at various levels

(organisations, states, regulatory domains, etc.)

Must have

REQ_DPW_F_10 A GUI shall be made available to model DPWs. Must have

REQ_DPW_F_11 The DPW tool should support the definition of data

workflows comprising atomic actions and decisions

through a GUI

Should have

REQ_DPW_F_12 The DPW tool should be able to execute a workflow Could have

REQ_DPW_F_13 The DPW should be seamlessly integrated with a

monitoring service to collect information on the progress

of the execution of a workflow

Should have

REQ_DPW_F_14 The DPW should provide a control interface to allow a

user to intervene (stop, pause, resume, inspect) on the

execution of a workflow.

Could have

REQ_DPW_NF_1 The DPW should support the secure execution of a

workflow

Could have

Table 3: Requirements for the Privacy and Usage Control plugin.

ID Requirement Priority

REQ_PUC_F_1 The plugin should provide the means for system

operation in accordance to access and usage control

policies. Moreover, policy based access control should

be inline with Attribute Based Access Control (ABAC)

paradigm

Should have

REQ_PUC_F_2 Access and usage control policies should be fine-

grained, following hierarchical organisation of related

entities; that is, policies should be defined in different

granularities of the underlying concepts, particularly the

resources to be protected.

Must have

REQ_PUC_F_3 All applicable parameters must be taken into account,

such as roles, attributes, contextual parameters, the

purpose under which the underlying action should be

executed, prior actions (history), etc.

Could have

REQ_PUC_F_4 Access and usage control policies must be machine-

readable, so that they can be processed by a policy

engine

Must have

51

REQ_PUC_F_5 The plugin must incorporate a policy engine, able to

make decisions as regards access and usage of data

and other resources

Must have

REQ_PUC_F_6 Policies must support the definition of complementary /

forbidden actions that must/ must not take place upon

and/or prior to their enforcement

Must have

REQ_PUC_F_7 The plugin should provide for implicit definition /

propagation of policies, i.e., rules defined for high-level

concepts should be propagated to more specific ones

without the need to add new specific rules

Could have

REQ_PUC_F_8 The plugin should provide for advanced decision making.

Policy decision point should provide for request

transformation where possible; instead of simply

allowing or denying an incoming access/usage request,

it should provide for request transformation (e.g., allow

access to/usage of parts of the requested data) and/or

prescribe/forbid the execution of subsequent actions

Should have

REQ_PUC_F_9 The plugin should provide for advanced conflict

resolution and rules merging, i.e., mechanisms for the

elimination of deprecated policies (i.e., overridden by

other policies), as well as for conflict resolution between

data provider and data consumer access and usage

constraints (consistent enforcement of data provider

constraints, without compromising core policies)

Should have

REQ_PUC_F_10 The plugin should provide a graphical user interface for

the specification of access and usage control rules (Data

Consumer side)

Should have

REQ_PUC_F_11 The plugin should provide the ability to data

subjects/providers to define their data usage constraints

in a machine-readable form through a graphical user

interface

Should have

REQ_PUC_F_12 By means of access and usage control rules, it should be

possible to explicitly determine what is the necessary

accuracy (detail level) of information that is necessary

for a certain purpose and under certain conditions.

Should have

REQ_PUC_F_13 Access and usage control should make possible that a

data structure can be collected or processed in parts,

based on certain criteria; that is, there must be selective

handling of different parts of such structure

Could have

REQ_PUC_F_14 The plugin should enable decisions about data

collection, processing, storage and communication to be

made on the basis of the underlying purpose

Must have

REQ_PUC_NF_1 Policies must support the specification of (i)

permissions, i.e., actions that are allowed to take place;

(ii) prohibitions, i.e., actions that are prohibited to take

place; (iii) obligations, i.e., actions that must take place

Should have

52

REQ_PUC_NF_2 The plugin should provide for ensuring the compliance

with data protection legislation; for instance, the plugin

should allow the definition of policies containing any

applicable GDPR-related rules as adapted to the specific

organisation’s needs

Must have

REQ_PUC_NF_3 The plugin should foster context-awareness: it should

provide the means for semantic definitions of applicable

contextual parameters, while decision making on data

collection, processing, storage and communication

should be able to consider contextual aspects

Could have

REQ_PUC_NF_4 Access and usage control should provide the means for

adjusting the detail level of data that are collected,

processed, stored and communicated, in a manner as

automatic as possible

Should have

REQ_PUC_NF_5 Access and usage control rules should define what data

are considered proportional for a certain purpose and

under certain conditions

Could have

REQ_PUC_NF_6 The plugin should provide for semantic information

management: the underlying information model should

(i) support a variety of concepts, including data types,

purposes, roles, operations, attributes, organisations,

context, etc.; (ii) provide coherent semantic definitions of

the underlying concepts; (iii) support the hierarchical

organisation of concepts, including different semantics,

such as generalisation / particularisation, inclusion, etc.

Should have

REQ_PUC_NF_7 The plugin must provide mechanisms for specifying the

compatibility between collection and processing

purposes and provide means for defining prevention

rules regarding incompatible purposes

Should have

REQ_PUC_NF_8 The plugin should enable transformation of governance

metadata to the underlying machine-readable access

and usage control policies and vice versa

Should have

Table 4: Requirements for the Pricing plugin.

ID Requirement Priority

REQ_PR_F_1 The plugin should provide similar products to a data

product specified by the users found in real commercial

data marketplaces.

Must have

REQ_PR_F_2 The plugin requires the characteristics of data products

including metadata fields included in commercial data

marketplaces such as their description, categories, units,

update rate, geographical and time scope, etc.

Must have

REQ_PR_F_3 The plugin should provide flexible functionality to label

data products of a data marketplace using the categories

Should have

53

and criteria of a “source” data marketplace based on their

descriptions.

REQ_PR_F_4 The pricing plugin will return a range of prices for a data

product specified by the user based on the estimation of

different price regressors fitting the price of similar

commercial products in data marketplaces, already

stored in the plugin database.

Should have

REQ_PR_F_5 Using Explainable AI, the pricing plugin will be able to

inform the buyers about the most relevant features when

building its price predictions, producing a list of relevant

features and a percentage of impact in the prediction of

the price.

Should have

REQ_PR_F_6 End users will be able to access this functionality through

a REST API

Must have

REQ_PR_F_7 The plugin should record the history of user

transactions/interactions for pricing, security, logging,

insights and transparency.

Should have

REQ_PR_F_8 The plugin must support an admin user that manages all

aspects of the plugin including the database,

manipulating data, updating/enriching datasets, training

models, interconnections, and permission management

Should have

REQ_PR_F_9 The database and architecture will be centralised with a

central server providing all the functionality, data, models,

and API responses.

Must have

REQ_PR_F_10 The plugin should incorporate market conditions and

marketplace interactions to produce a dynamic price

range for datasets.

Should have

REQ_PR_F_11 The energy profile of a dataset should be used as a

feature to influence its price

Should have

REQ_PR_NF_1 The plugin must be usable by end users with only domain-

specific knowledge to get price ranges and similar

products in the database.

Must have

REQ_PR_NF_2 The architecture of the plugin and its various

management scripts should be well documented and

available/easily accessible to the plugin admin.

Could have

REQ_PR_NF_3 Must be able to support at least 10.000 price references Should have

REQ_PR_NF_4 Must support data from at least 10 data marketplaces Should have

REQ_PR_NF_5 The plugin must respond in a few seconds to applications

through the REST API

Should have

REQ_PR_NF_6 The pricing plugin must include security mechanisms to

prevent abuse and misuse from users based on the

activity registered through the REST API

Should have

54

REQ_PR_NF_7 The plugin needs to be compliant with the EU regulations

(such as GDPR, Data Act, AI Act)

Must have

REQ_PR_NF_8 The plugin should be designed in a modular and

maintainable way, allowing for flexibility to add and/or

update the machine learning models, labels etc, enabling

extensibility.

Should have

Table 5: Requirements for the Valuation plugin.

ID Requirement Priority

REQ_VAL_F_1 The plugin will provide functions to calculate the relative

value of a set of N data sources for a certain ML task

given by a model and a valuation function, or for specific

valuation functions that use relevant data resources to

evaluate as inputs.

Must have

REQ_VAL_F_2 The plugin will be implemented using a Python library

that can be integrated with new ML models and valuation

functions by users.

Must have

REQ_VAL_F_3 The plugin will provide functions to carry out exact

calculations of the Shapley value of data sources, and

different approximation algorithms.

Must have

REQ_VAL_F_4 Shapley approximation algorithms will include tunable

parameters to balance precision and execution time.

Must have

REQ_VAL_NF_1 The plugin must be usable by ML developers with only

domain specific knowledge to get price ranges and

similar products in the database.

Must have

Table 6: Requirements for the Environmental Impact Optimiser plugin.

ID Requirement Priority

REQ_EE_F_1 The plugin should generate an energy profile of a dataset Must have

REQ_EE_F_2 The plugin should display relevant energy consumption

metrics, in a graphical manner, based on processes

applied to the datasets

Must have

REQ_EE_F_3 The plugin should use explainability techniques to explain

the factors contributing to the energy consumption

Should have

REQ_EE_F_4 The plugin requires hardware information such as server,

platform (physical/cloud) and data centre characteristics

Must have

REQ_EE_F_5 The plugin should continuously improve its energy

profiling as the dataset quantity increases, and requires

dataset metadata

Should have

REQ_EE_F_6 The plugin should calculate the energy cost of storing and

updating a dataset

Must have

55

REQ_EE_F_7 The plugin should model the energy footprint of atomic

operations related to the access of resources

Should have

REQ_EE_NF_1 The plugin must be usable only by internal stakeholders,

other plugin developers and relevant data marketplaces

Must have

REQ_EE_NF_2 The plugin should be compatible with different operating

systems, environments and platforms, including both

physical and cloud infrastructure

Must have

REQ_EE_NF_3 The plugin performance should not degrade significantly

when monitoring large or complex dataset processes

Should have

REQ_EE_NF_4 The plugin needs to be compliant with the EU regulations

(such as GDPR, AI Act)

Must have

REQ_EE_NF_5 The plugin should be designed in a modular and

maintainable way, allowing for easy updates and bug

fixes

Could have

Table 7: Requirements for the Resource Discovery plugin.

ID Requirement Priority

REQ_RD_F_1 Users can search datasets with keywords on a dataset

catalogue

Must have

REQ_RD_F_2 Users can search datasets with facets on a dataset

catalogue

Must have

REQ_RD_F_3 Users must be able to search based on an abstract

(incomplete) description of a dataset. This should be

equivalent to an OR keyword/facet search using the

attributes specified in the abstract description.

Must have

REQ_RD_F_4 Users must be able to search with keywords on top of an

existing Data Processing Operation Catalogue.

Must have

REQ_RD_F_5 Users must be able to search with facets on top of an

existing Data Processing Operation Catalogue.

Must have

REQ_RD_F_6 Users must be able to search based on an abstract

(incomplete) description of a data processing operation.

This is equivalent to an OR keyword/facet search using

the attributes specified in the abstract description

Must have

REQ_RD_F_7 Given a Data Processing Workflow, users can trigger a

search for alternatives for any resource in the workflow

Should have

REQ_RD_F_8 User should be able to connect remotely to multiple

catalogues (assuming they are available on a Web server)

to browse and search from all of them.

Could have

REQ_RD_F_9 Given a Data Processing Workflow, and a set of resource

catalogues, the plugin should be able to recommend

resources that could replace or augment the ones in the

Data Processing Workflow

Should have

56

REQ_RD_F_10 Given an owned dataset, the plugin should enable

searching for datasets in a catalogue that can augment

the input dataset in terms of join/union operations.

Could have

REQ_RD_NF_1 The plugin must be usable by people with only domain

specific knowledge

Must have

REQ_RD_NF_2 The plugin must support at least 100.000 resources when

used on a local catalogue

Could have

REQ_RD_NF_3 The plugin must support connection to at least 5 remote

catalogues

Could have

Table 8: Requirements for the Negotiation and Contracting plugin.

ID Requirement Priority

REQ_NE_F_1 Users must be able to make contracts semi-automatically

that follow the IDSA standard (with some variance

allowed).

Must have

REQ_NE_F_2 System should be able to detect (some) conflicts

between offer and request contracts.

Must have

REQ_NE_F_3 Users should be able to negotiate with other parties

whenever there is a conflict in their respective contracts.

Must have

REQ_NE_F_4 Users must be able to accept, reject, or continue

negotiations.

Must have

REQ_NE_F_5 System should evaluate privacy and usage settings from

all parties.

Must have

REQ_NE_F_6 System should evaluate the environmental impact of the

relevant datasets.

Must have

REQ_NE_F_7 System should evaluate the pricing of all relevant

datasets and inform all parties.

Must have

REQ_NE_F_8 System should provide a visualisation of the result of the

negotiation (i.e., agreement, rejection).

Must have

REQ_NE_F_9 Users must be able to generate contracts that contain

and use boilerplate text whenever the contract contains

clauses that can only be expressed through natural

language.

Should have

REQ_NE_F_10 Once an agreement has been reached, the system should

draft an agreement contract that can be reviewed by all

parties.

Must have

REQ_NE_F_11 Whenever a conflict is detected between contracts, the

system must highlight said conflicts so that all parties

can review them.

Should have

57

REQ_NE_F_12 Users may define that certain parts of their contracts are

non-negotiable, so the system must immediately reject

contracts that conflict with any of these parts.

Should have

REQ_NE_F_13 System must ensure that all negotiations are carried out

while respecting and protecting all users’ privacy and

confidentiality.

Should have

REQ_NE_F_14 Users must be able to edit policies in contracts with the

help of a graphical interface.

Must have

REQ_NE_NF_1 Plugin must be usable by people with domain-specific

knowledge (not necessary knowledge of how the

contracts are processed).

Should have

Table 9: Requirements for the Integration and Exchange plugin.

ID Requirement Priority

REQ_IE_F_1 System must be capable of integrating data by forward

chaining (chasing) and backward chaining (query

rewriting).

Must have

REQ_IE_F_2 Users must be able to choose whether the data to

integrate comes from a local source or a remote source.

Must have

REQ_IE_F_3 Users must be able to define and create schema

mappings with help of a graphical interface.

Must have

REQ_IE_F_4 Users must be able to define constraints and functional

dependencies for target database.

Must have

REQ_IE_F_5 Users must be able to integrate data that may be

structured under different standard formats (e.g., TSV,

JSON, RDF).

Should have

REQ_IE_F_6 Users must be able to integrate data from various

sources concurrently.

Should have

REQ_IE_F_7 Users must be able to choose whether to integrate data

through query rewriting or materialization of sources.

Must have

REQ_IE_F_8 Users must be able to view a preliminary view of the

resulting integration.

Could have

REQ_IE_F_9 Users must be able to choose to output their data in their

desired format from a list of options.

Should have

REQ_IE_F_10 System should be able to recognise sets of dependencies

that allow for more efficient data integration.

Could have

REQ_IE_F_11 Users must be able to execute queries over the integrated

data with a standard query language (e.g., SQL or

SPARQL).

Must have

REQ_IE_F_12 Users must be able to include a number of remote

sources (either databases or APIs).

Must have

58

REQ_IE_F_13 System should operate with local sources if there is no

internet connection available.

Should have

REQ_IE_F_14 System should compile a history of operations done by

the user. In addition, it should allow the user to repeat

these actions.

Could have

REQ_IE_F_15 System should work independently from other UPCAST

plugins.

Should have

REQ_IE_NF_1 The plugin must be usable by people with just some

domain specific knowledge.

Should have

REQ_IE_NF_2 The definition and creation of schema mappings must be

intuitive.

Must have

REQ_IE_NF_3 Data integration should terminate in a reasonable amount

of time.

Must have

REQ_IE_NF_4 System should provide guidance or suggestions when

choosing between forward and backward chaining.

Could have

REQ_IE_NF_5 System should warn users when attempting to integrate

data under constraints that are not guaranteed to

terminate.

Could have

REQ_IE_NF_6 System should have the option to set a timeout for some

of its processes (forward chaining in particular).

Should have

Table 10: Requirements for the Secure Data Delivery plugin.

ID Requirement Priority

REQ_SEC_F_1 Data processing must be executed in a secure sandbox

environment

Must have

REQ_SEC_F_2 CIA requirements must be guaranteed for available

datasets

Must have

REQ_SEC_F_3 Implementation of mechanisms to authenticate and

verify the identity of users participating in the

marketplace, such as through secure login systems or

digital signatures.

Must have

REQ_SEC_F_4 Implementation of access control policies to ensure that

users have appropriate access rights and permissions

based on their roles within the marketplace.

Must have

REQ_SEC_F_5 Implementation of strong encryption algorithms to

protect the confidentiality of data during transmission

and storage.

Must have

REQ_SEC_F_6 Implementation of mechanisms to validate the integrity

of data to ensure that it has not been tampered with or

modified during transit or storage.

Must have

REQ_SEC_F_7 Utilisation of distributed ledger technologies (e.g.,

blockchain) to maintain an immutable record of

Must have

59

transactions and data modifications, ensuring data

integrity.

REQ_SEC_F_8 Employ secure communication protocols (e.g., HTTPS,

TLS) for data transmission between participants,

protecting against interception or unauthorized access.

Must have

REQ_SEC_F_9 Allow data providers to specify access controls and

permissions for their data, ensuring that only authorized

entities can access and utilise it.

Must have

REQ_SEC_F_10 Utilisation of smart contracts to enforce agreements,

terms and conditions

Must have

REQ_SEC_F_11 Maintenance of comprehensive audit logs of data

transactions, access attempts, and modifications for

monitoring and forensic analysis.

Must have

REQ_SEC_F_12 Ensuring compliance with relevant data protection

regulations (e.g., GDPR) and industry standards.

Must have

REQ_SEC_NF_1 Scalability: The marketplace should be able to handle a

growing number of participants, data transactions, and

data volumes without compromising security.

Must have

REQ_SEC_NF_2 The marketplace should provide efficient and responsive

operations, including data retrieval, data sharing, and

authentication processes, to minimise delays and ensure

a smooth user experience.

Must have

REQ_SEC_NF_3 Marketplace should implement fault tolerance

mechanisms to handle failures in individual nodes or

components.

Must have

REQ_SEC_NF_4 The marketplace should be available and accessible to

users consistently, with minimal planned or unplanned

downtime.

Must have

REQ_SEC_NF_5 Marketplace should provide compatibility and

interoperability with different data formats, protocols,

and standards to facilitate seamless integration with

various data sources and consumers.

Must have

REQ_SEC_NF_6 The system should adhere to strict privacy and data

protection regulations, such as GDPR or CCPA, to protect

user data and ensure compliance.

Must have

Table 11: Requirements for the Monitoring plugin.

ID Requirement Priority

REQ_MON_F_1 The monitoring plugin must be able to collect data from

different sources including access and use of datasets.

Must have

REQ_MON_F_2 The monitoring plugin must be able to store monitoring

data for a configurable duration.

Must have

60

REQ_MON_F_3 The monitoring plugin must be able to use a JSON-

based data model for the collected monitored data.

Must have

REQ_MON_F_4 The monitoring plugin must be able to provide

visualisations of the collected data.

Must have

REQ_MON_F_5 The monitoring plugin should be able to integrate with

external services that may further analyse the collected

data.

Should have

REQ_MON_NF_1 The monitoring service must be fault tolerant. Should have

REQ_MON_NF_2 The monitoring service must be configurable for the

type and sources of collected data.

Must have

REQ_MON_NF_3 CIA requirements should be guaranteed for all

monitoring data.

Must have

Table 12: Requirements for the Federated Machine Learning plugin.

ID Requirement Priority

REQ_FL_F_1 It must be able to aggregate data from multiple sources

in a privacy-preserving manner.

Must have

REQ_FL_F_2 It must be able to train machine learning models on

aggregated data.

Must have

REQ_FL_F_3 It must be able to distribute the training process across

multiple devices.

Must have

REQ_FL_F_4 It must be able to coordinate the updates to the model

parameters.

Must have

REQ_FL_F_5 It must be able to measure the accuracy and performance

of the models.

Must have

REQ_FL_F_6 It must be able to compare the results of different

models.

Must have

REQ_FL_F_7 It must be able to deploy machine learning models to

production.

Must have

REQ_FL_F_8 It must be able to encrypt the data before it is aggregated

or shared.

Must have

REQ_FL_F_9 It must use a secure encryption algorithm. Must have

REQ_FL_F_10 It must keep the encryption keys safe. Must have

REQ_FL_F_11 It must comply with all applicable privacy laws and

regulations.

Must have

REQ_FL_F_12 It must be able to demonstrate that it is protecting the

data in a secure and compliant manner.

Must have

REQ_FL_NF_1 It must be able to train and deploy machine learning

models in a timely manner.

Must have

61

REQ_FL_NF_2 It must be able to scale to support a large number of

users and devices.

Must have

REQ_FL_NF_3 It must be able to protect the data from unauthorised

access, modification, or disclosure.

Must have

REQ_FL_NF_4 It must be interoperable with other federated learning

frameworks and platforms.

Must have

REQ_FL_NF_5 It must be easy to maintain and update. Must have

REQ_FL_NF_6 It must be transparent in its operations, so that users can

understand how their data is being used.

Must have

REQ_FL_NF_7 It must protect the privacy of the data, so that users can

be confident that their data is not being shared or used

without their consent.

Must have

Table 13: System-wide requirements.

ID Requirement Priority

REQ_SYS_1 Technical interoperability with regards to support for

different communication patterns, message routing and

dispatching, etc. must be supported.

Must have

REQ_SYS_2 Semantic interoperability with regards to support for

conformance to a common data model/vocabulary

must be ensured.

Must have

REQ_SYS_3 Graphical User Interfaces (GUIs) must be provided for

all plugins

Must have

REQ_SYS_4 Support for multilingualism should be supported by the

plugins

Should have

REQ_SYS_F_5 System components should be developed in a modular,

extensible and adaptable way.

Must have

4.5 System Information Model and Vocabularies

UPCAST Vocabulary is divided in 6 logical units or “Facets”, based on the concerns of

the plugins most related to each facet. We reused classes from established vocabularies

DCAT and IDS Information model, work from previous related EU projects smashHit and

BPR4GDPR. In the following, we describe each facet. Blue squares and black arrows

represent Classes and Properties reused from existing vocabularies, while pink squares

and red arrows represent Classes and Properties created by UPCAST.

The documentation of the Vocabulary is available at https://eu-

upcast.github.io/vocabulary/index-en.html.

https://eu-upcast.github.io/vocabulary/index-en.html
https://eu-upcast.github.io/vocabulary/index-en.html

62

4.5.1 Dataset Facet

This facet concerns the Resource Specification and Resource Discovery plugins. We

reuse the core classes from the DCAT vocabulary: a Catalogue that hosts Resources and

Datasets. We add two additional Catalogued resources: Artefacts, to model resources

that are not datasets such as reports or visualizations; and Data Processing Task as a

high-level class that allows the modelling of data processing that is not implemented in

a containerised piece of Software. For processing tasks that are containerised, we reuse

the DataApp class from the IDS Information Model. IDS Participants in a Data Space can

be declared as Consumers and Providers of Resources.

In this facet (Figure 28) we introduce Data Processing Workflow as a subclass of

prov:Activity (from the widely extended Prov-O vocabulary), linked to the Resources it

uses and generates.

Figure 28: Dataset Facet.

4.5.2 Pricing Facet

The Pricing facet (Figure 29) concerns the Pricing and Valuation plugin. We create a Data

Product class to model the packaging of one or more Distributions of a Dataset in a Data

Product for sale. In addition to relevant properties and attributes in DCAT Dataset, such

as Temporal Coverage and Description, we created attributes on a Data Product to hold

the input and the output of the Pricing plugin. We will further research on how data

products are being used in other contexts, and how other current EU projects in the Data

Space topic handle this concept to assess if we need a further “version” of a Data

Product, e.g., to support different prices for different delivery methods.

63

Figure 29: Pricing Facet.

4.5.3 Environmental Facet

We create a class “Environmental Profile” (Figure 30) to hold data about the estimation

or measurement (depending on the permission to run the energy monitoring tool

developed by CDR) of the environmental footprint of an execution and an “Execution

Environment” class to hold hardware information of where a DataApp, a DataService or

a Data Processing Workflow are run. This enables the comparison of the environmental

profiles of the same Data App or Service in different Execution Environments.

Figure 30: Environmental Facet.

4.5.4 Privacy and Usage Control Facet
This Facet is shown in (Figure 31) Here we reuse previous ontologies created by ICT-

Abovo and developed during the BPR4GDPR project. Rules are implemented as

64

instances of the Permissions, Prohibitions and Obligations classes (sub-classes of the

Rules class). The core of the rules are actions, implemented as Actions class instances.

Actions consist of four elements, i.e., actor, operation, resource and organisation, that

are either defined as concrete entities, by means of ConcreteEntities class instances, or

abstract, implemented leveraging the concept of enhanced entities (EnhancedEntities

class). The latter are enhanced in the sense that the ontology allows to define, apart from

their semantic type, also the constraints upon attributes characterising the entity. For

this, appropriate concepts are provided, including Expressions, the instances of which

provide for modelling atomic constraints with a subject and a value, and Variables, that

allow the specification of concepts in relation to other concepts (e.g., set the value of a

resource’s constraint to be relative to the semantic type of the actor), thereby

maximising expressiveness.

Figure 31: Privacy and Usage Control Facet.

4.5.5 Data Processing Workflow (DPW) Facet
A DPW is a graph where Tasks are the nodes, and the edges define the sequence of

application, as well as overall data and control flow (Figure 32).

Edges carry InformationEntities that define the nature of data to be transferred from one

task to the next. A wmo:InformationEntity may refer to a specific dataset, or describe

transferred data in abstract terms, through a data type and potential additional

constraints. An edge may also be characterised by flow conditions and constraints,

further specifying and/or restricting the occurrence of implied transition.

A Task has one to several execution profiles. An ExecutionProfile describes an actor that

applies an operation (implemented by a DataProcessingTask) on an Asset (often a

Dataset), subject to some task conditions. wmo:ActorEntity instances denote the

entities assigned with the execution of tasks. They may be defined at either concrete

(e.g., a particular person or organisation) or abstract level (e.g., some role and possibly

additional constraints). Asset entities represent the objects on which tasks are

performed, meaning that they are accessed, processed or modified for the purpose of

delivering the corresponding functionalities. They can similarly be defined in either

concrete or abstract terms. In UPCAST they are typically expected to refer to (types of)

datasets.

65

The wmo:OperationEntity describes the type of functionality executed at each workflow

step. It is defined at an abstract level, through the corresponding operation type, and

linked to its concrete materialisation through the upcast:implementedBy property.

Figure 32: Data Processing Workflow Facet.

4.5.6 Contracting and Negotiation Facet
The Contracting and Negotiation Facet is shown in Figure 33. An instance of Data

Processing Workflow describes the processing done to a set of Datasets with a set of

Data Processing Tasks. A Contract formalises the state of the agreement of all

participants in the DPW with that processing, from “Pending” to “Signed”, and describes

the Medium and Jurisdiction (Location) of the Contract.

The description of the processing of a DPW represents the “clauses” of the contract

regarding the processing. A party wishing to start a negotiation would propose the

removal, update or addition of one or more of the Execution Profiles that comprise the

DPW; the amendment is rechecked with respect to existing Rules. If it passes, it is then

submitted to the approval of the other Participants.

66

Figure 33: Contracting and Negotiation Facet.

4.6 System Decomposition Model

The UPCAST infrastructure comprises a number of interoperating plugins (components)

that collectively support the UPCAST MVP functionalities as shown in Figure 34. The

dependencies between the plugins are shown in this figure as well.

Figure 34: System decomposition model.

4.7 System Collaboration Model

This section describes the system collaboration model. It models the interaction of

UPCAST plugins and involved stakeholders regarding the processing of datasets

(dataset workflow) as described in the user journeys in Chapter 3. This model represents

the most common scenario and uses as many plugins as possible. The collaboration

67

model for other types of resources (operations & artefacts) is similar, but also simpler,

as some activities described below apply only to datasets (e.g., data integration).

Figure 35 illustrates the overall system collaboration model for the dataset workflow,

where the upper swimlane represents the workflow for Resource Provider and the lower

swimlane represents the workflow for Resource Consumer. The detailed collaboration

models for the main activities in Figure 35 are modelled in Figure 36 to Figure 43.

Figure 35: Overall system collaboration model for dataset workflow.

Figure 36: Collaboration model for the "Describe Dataset" process.

68

Figure 37: Collaboration model for the "Publish Dataset" process.

Figure 38: Collaboration model for the "Define Data Processing Workflow" process.

69

Figure 39: Collaboration model for the "Find Relevant Datasets" process.

Figure 40: Collaboration model for the "Verify DPW against various aspects" process.

70

Figure 41: Collaboration model for the "Negotiate Terms and Establish Contract" process.

Figure 42: Collaboration model for the "Process Dataset" process.

71

Figure 43: Collaboration model for the "Post Process Dataset" process.

4.8 Component and Interface Specification Model

This section specifies the UPCAST plugin interfaces (i.e., APIs) in terms of methods and

their input and output. These APIs can be implemented using different technologies, for

example, REST API is the most common API on the Web. The APIs can be communicated

synchronously using direct method calls or asynchronously using a data bus for easy

integration. The API methods can be converted to messages/events to facilitate the use

of a data bus. Therefore, this section defines the UPCAST plugin interface specification

in the following tables with a description of method, input, output, topic and message

type. The message type can be "Direct" (using method calls) or "Broadcast" (using

message queues).

4.8.1 Resource Specification
Table 14: Interface specification for the Resource Specification plugin.

Method Input Output Topic Message

type

description

(comments)

CreateResou

rce

Type[Dataset

/DataProces

singOperatio

n]

URI of

created

resource

Resource

Spec

Direct

SetMetadata

Values

URI of

Resource,

Dict of

Attribute/Val

ue

OK Resource

Spec

Direct Metadata Values

replaced by input

SetPricingMe

tadata

URI of

Resource,

Dict of

Pricing

Metadata

OK Resource

Spec

Direct Pricing metadata

values replaced by

input

72

SetPrivacyM

etadata

URI of

Resource,

Dict of

Privacy

Metadata

OK Resource

Spec

Direct (Privacy metadata

replaced by input)

ListResource

s

[All,Dataset,

Data

Processing

Operation]

List of

Resource

s

Resource

Spec

Direct

getResource URI Resource Resource

Spec

Direct

importVocab

ulary

Path to

vocabulary

file

OK Resource

Spec

Direct

4.8.2 Data Processing Workflow
Table 15: Interface specification for the Data Processing Workflow plugin.

Method Input Output Topic Message

type

description

(comments)

defineDPW Graphical

representati

on of DPW

(as designed

by the user

through the

GoodFlows8

UI)

Ontologica

l DPW

model

(.owl)

DPWDefinit

ion

Direct Consumer provides

specifications of a

DPW along with

intended usage

defineDPWp

olicies

DPW

identifier,

access and

usage

control rules

ResourceD

escription

ResourceS

pec

Broadcast The user defines

access and usage

control constraints at

the level of the whole

DPW, in case the

latter is planned to be

advertised as a

Resource to be used

in other DPWs

StartExecutio

n

DPW WorkflowP

rocessing

Direct Commencement of

processing

endExecutio

n

DPW WorkflowP

rocessing

Direct Termination of

processing

8 GoodFlows was developed in the context of BPR4GDPR project and offers a process planning

environment -- https://www.ict-abovo.gr/goodflows/

73

accessResou

rce

DPW WorkflowP

rocessing

Direct Execution requests

access to a dataset

releaseReso

urce

DPW WorkflowP

rocessing

Direct Execution releases

resource

filter DPW WorkflowP

rocessing

Direct Execution filters a

dataset according to

certain criteria

project DPW WorkflowP

rocessing

Direct Execution projects

attributes of a

dataset

map DPW WorkflowP

rocessing

Direct Execution maps a

function to a dataset

join DPW WorkflowP

rocessing

Direct Execution joins a

dataset with another

union DPW WorkflowP

rocessing

Direct Execution unions the

dataset with another

4.8.3 Privacy and Usage Control
Table 16: Interface specification for the Privacy and usage Control plugin.

Method Input Output Topic Messag

e type

description (comments)

defineRPRu

les

RP

constraints

as provided

upon

Resource

Specificatio

n

PUC rules PUCrules

Specificat

ion

Direct RP’ constraints reflected in

the respective licences are

translated into the

underlying semantic policy

language in order for the

negotiation to take place

defineRCrul

es

RC rules

defined

through the

PUC UI

PUC rules PUCrules

Specificat

ion

Direct RC’s access and usage

control rules (i.e.,

organisation-specific and

prescribed by the

applicable regulations)

defined as PUC rules

identifyCon

flicts

RP

constraints,

DPW

constraints,

RC internal

rules

Identified

conflicts

ConflictId

entificatio

n

Direct RC access and usage

intentions along with

organisation-specific and

legislation-related rules are

checked against RP access

and usage constraints and

possible conflicts are

identified

evaluateAn

dTransfor

mAccessA

ndUsageRe

quest

RP

constraints,

DPW

constraints,

Authorisa

tion

decision/

transform

PolicyDec

ision

Direct Evaluation and/or

transformation of request

for access/usage

74

RC internal

rules

ed

request

4.8.4 Pricing
Table 17: Interface specification for the Pricing plugin.

Method Input Output Topic Message

type

description (comments)

GetSimilarPr

oducts

Resource

descriptio

n

Data

products

found in

commercial

DMs

pricin

g

Direct The plugin searches in the

internal, pre-populated

cross-Data-Marketplace

database and suggests data

products sold in

commercial data

marketplaces that are close

to the description provided

by the user.

GetPriceEsti

mation

Resource

(Dataset

Metadata)

Price Range pricin

g

Direct The provider will request the

price of the dataset

adhering to the resource

specification vocabulary

and this module will

calculate the estimated

price based on static or

dynamic methods

GetXAIMetri

cs

Resource

(Dataset

Metadata)

, Model

version (s)

Explainabilit

y Metrics

pricin

g

Direct This module will generate

metrics that explain the

factors contributing to the

estimated price(s) of the

dataset

Note: The XAI Metrics may be included as a part of one single method combined with the price

estimation method, depending on the plugin design

4.8.5 Valuation
Table 18: Interface specification for the Valuation plugin.

Method Input Output Topic Messag

e type

description (comments)

GetEligibl

eDatasets

Task (model,

function,

valuation,

valuation

method, …)

Id of

eligible

datasets /

data

providers

Valuatio

n

Direct The plugin returns the

number and id of data

providers that are eligible for

a certain task or valuation

method

GetValue Task (model,

function,

valuation,

valuation

method, …)

Value of

the data

according

to the

criteria

provider

by the

Valuatio

n

Direct The plugin executes a

function or trains a model

using data from different

providers and returns a

number representing this

value

75

Id of target

Dataset /

data provider

user (real

number)

GetRelativ

eValue

Task (model,

function,

valuation,

valuation

method, …)

Valuation

model

(Shapley,

LOO, etc,)

Id of target,

Datasets or

data

providers

Relative

value of

datasets /

data from

data

providers

according

to the

criteria

provider

by the

user (real

number

Valuatio

n

Direct The plugin returns a relative

valuation of different

datasets or data from

different data providers in the

system that are eligible for a

particular task.

GetValue

Explanati

ons

Id of target

valuation

exercise

Explanati

on of

values

obtained

(str,

values,

etc.)

Valuatio

n

Direct The plugin returns an

explanation for the values

calculated in a previous value

calculation exercise.9

4.8.6 Environmental Impact Optimiser
Table 19: Interface specification for the Environmental Impact Optimiser plugin.

Method Input Output Topic Message

type

description (comments)

GetEnergyP

rofile

Resource

(Dataset

metadata),

Hardware

information,

operations

Profiled

dataset

energy

consum

ption

Env_opti

miser

Direct The provider will request

the estimated energy

profile of the dataset

GetPowerC

onsumptio

n

Infrastructure

access,

operations

Actual

power

consum

ption

Env_opti

miser

Direct This method will monitor

the operations and

processes applied to the

dataset

GetXAIMetr

ics

Energy profile,

Resource

(Dataset

metadata)

Explaina

bility

Metrics

Env_opti

miser

Direct This module will

generate metrics that

explain the factors

contributing to the

energy profile of the

dataset

9 This is strongly context-dependent. A particular method will be delivered for the use case in health and

fitness.

76

4.8.7 Resource Discovery
Table 20: Interface specification for the Resource Discovery plugin.

Method Input Output Topic Message

Type

description (comments)

searchFacet Search Facet

Object

List of

Resources

 Direct Get a list of resources based

on a query generated from a

facet

searchText Search Text List of

Resources

 Direct Get a list of resources based

on a query generated from a

textual explanation

getRelatedDatase

ts

Resource

Metadata

List of

Resources

 Direct Get a list of resources based

on a query generated from a

single resource

startDiscovery Resource

Metadata

OK discovery Broadcast Start the discovery process

for a new resource

updateDiscovery Resource

Metadata

OK discovery Broadcast Update the related content

about a resource from the

knowledge graph

cleanResource Resource

Metadata

OK discovery Broadcast Delete the related content

about a resource from the

discovery knowledge graph

4.8.8 Negotiation and Contracting
Table 21: Interface specification for the Negotiation and Contracting plugin.

Method Input Output Topic Message

type

description

(comments)

submitDataset

Request

Dataset

identifier,

RC

metadata

OK Negotiation Direct Once RP and RC

have been

matched, RC

submits a request

for the matching

resource to the RP;

RP gets informed

that their dataset is

included in the

DPW specified by

the RC

editRPNegotiat

ionParameters

Dataset

descriptio

n

Dataset

description

Negotiation Direct RP defines the

negotiation range

for each statement

in the resource

specification

editRCNegotia

tionParameter

s

DPW DPW Negotiation Direct RC may fine-tune

the DPW

specification in

order to reflect their

own negotiation

ranges

77

verifyDPW DPW, RP

constraint,

RC rules

Identified

conflicts,

DPW

alternatives

Negotiation Direct DPW gets verified,

resulting in

identification of

conflicts and

suggestions for

conflict resolution

reflected in valid

DPW alternatives.

4.8.9 Integration and Exchange

Table 22: Interface specification for the Integration and Exchange plugin.

Method Input Output Topic Message

type

description

(comments)

submitSource

Spec

Specificatio

ns of a

source

OK Integration

and

Exchange

Direct Consumer provides

specifications of a

source, which can

then be used to

define a mapping

from source to target.

rewriteQuery Source, one

or more

mappings,

and global

schema

Access

to

integrat

ed

source

Integration

and

Exchange

Broadcast Broadcast perhaps to

any remote machines

that can run the

integration.

Otherwise, direct

message if run locally

materialiseVie

ws

Source, one

or more

mappings,

and global

schema

Access

to

integrat

ed

source

Integration

and

Exchange

Broadcast Same as above.

Perhaps duplicate

and we can give the

choice of forward or

backward chaining as

input. Of course,

mappings are

different for each

case.

requestSource Identifier

for a

source

Access

to

source

Privacy Direct Consumer requests

access to a source

(that they should

have access to) so it

can be used in

integration.

4.8.10 Secure Data Delivery

The detailed design and implementation of this plugin will be provided when the new project

partner responsible for this plugin joins the consortium.

4.8.11 Monitoring
Table 23: Interface specification for the Monitoring plugin.

78

Method Input Output Topic Message

type

description

(comments)

configMonitori

ng

Monitoring

Data

 Processing

Monitoring

Direct Configuration of

monitoring plugin

startMonitorin

g

 Monitoring

Data

 Processing

Monitoring

Direct Commencement of

monitoring

endMonitoring Monitoring

Data

Processing

Monitoring

Direct Termination of

monitoring

sendMonitorin

gData

 Monitoring

Data

Processing

Monitoring

Direct Execution sends

monitoring data

4.8.12 Federated Machine Learning
Table 24: Interface specification for the Federated Machine Learning plugin.

Method Input Output Topic Message

type

description

(comments)

initializeFeder

atedLearning

 Direct Initializes the

federated machine

learning process

registerDevic

e

deviceID (txt;

a unique

identifier for

the device),

deviceType

(txt; the type

of the device,

e.g., mobile,

IoT)

 Direct Registers a new device

to participate in

federated learning

setTrainingPa

rameters

trainingParam

s (Dict; A

dictionary

containing

training

parameters)

 Direct Sets training

parameters such as

learning rate, epochs,

and batch size for the

federated learning

process

sendModelto

Device

deviceID (txt)

, model

(Model; the

machine

learning

model to be

trained

locally)

 Direct Sends a machine

learning model to a

registered device for

local training

trainLocalMo

del

deviceID (txt),

trainingData

trainedMo

del

(Model;

 Direct Trains the locally

provided machine

79

(local training

data)

the locally

trained

machine

learning

model)

learning model on the

device using local data

aggregateLoc

alModels

 Direct Aggregates the locally

trained models from

registered devices to

create a global

federated model

evaluateGlob

alModel

globalModel

(Model),

evaluationDat

a (Data)

evaluation

Metrics

(Dict;

metrics

assessing

the

performa

nce of the

global

federated

model

 Direct Evaluates the

performance of the

global federated model

on evaluation data.

updateGlobal

Model

globalModel

(Model; the

updated

global

federated

machine

learning

model)

 Direct Updates the global

federated model with

the latest aggregated

version

stopFederate

dLearning

 Direct Stops the federated

machine learning

process

getFederated

LearningStatu

s

 status

(str),

Current

status

(e.g., 'Idle',

'Training',

'Complete

d')

 Direct Retrieves the current

status of the federated

learning process.

sendMessage deviceID,

messageType

,

messageData

(The data

contained in

the message)

 Sends a message from

a device to the central

system

80

4.9 UPCAST Architecture

Figure 44: UPCAST technical architecture.

Figure 44 depicts the overall architecture of UPCAST. The architecture is the result of

the analysis of user requirements, the available technologies, and technical approach of

UPCAST as shown in the DoA.

The three major roles that are shown in the architecture are:

• Data Consumer10: the entity that makes use of a dataset through processing it.

• Data Provider: the entity that makes a dataset available to other entities for

processing.

• Data Sharing Platform11: The entity that hosts the UPCAST plugins and facilitates

the interactions between providers and consumers. Datasets are also hosted by

the Data Sharing Platform.

The UPCAST architecture shows that providers and consumers interact through the Data

Sharing Platform. The overlapping areas between the Data Sharing Platform and the

provider and the Data Sharing Platform and the consumer signify that both providers and

consumers are identified in the Data Sharing Platform and are authenticated into it

before any interactions take place.

UPCAST plugins are shown in green or orange and are deployed in the Data Sharing

Platform. Some plugins are addressed to the provider, others to the consumer, while the

Negotiation and Contracting plugin is meant to be used by both providers and

consumers to reach consensus on the use of the dataset that is expressed through a

contract.

10 UPCAST supports resources which can be datasets, data operations or artefacts. In this

section, we focus on datasets, thus address Data Consumers and Data Providers instead of

Resource Providers and Resource Consumers. All plugins handle datasets while some of the

plugins are also applicable for other types of resources.
11 A data marketplace is an example of a Data Sharing Platform.

81

The provider uses a number of plugins to create a specification of a dataset (Resource

Specification plugin), annotate it with pricing information (Pricing plugin), environmental

information (Environmental Impact Optimiser plugin) and specifications of its privacy,

access and usage policies (Privacy and Usage Control plugin). This set of specifications

express the provider’s requirements for the intended use of the dataset that they make

available. The dataset specification and annotation are visualised by the provider

through a visualization engine. An example of such visualization engine is Mira, a digital

platform that supports the functions of digital twins. In UPCAST, the dataset is a data

asset, while Mira is used to specify and implement its digital twin. The specification and

annotations of the dataset twin are exported and further published to the Data Sharing

Platform by the provider.

Similarly, the consumer uses a number of plugins to specify the dataset they need for

processing, and the intended processing of it. The Data Processing Workflow plugin is

used to specify the algorithms that will be applied to the dataset, and it expresses the

consumer’s requirements for the processing of the dataset. The Data Processing

Workflow is used to produce the processing specification for the dataset (a DPW model),

which will be further converted to Execution Specification. Once the processing

requirements have been expressed by the consumer, the Resource Discovery plugin is

used to search for a dataset in the Data Sharing Platform based on consumer search

criteria.

The Negotiation and Contracting plugin is used by both the provider and the consumer

for negotiating access and usage parameters that are not covered by the provider’s

specifications of the dataset and the consumer requirements of the dataset. The

successful outcome of the negotiation is the formation of a contract that will be

respected during processing of the dataset.

Once a contract between the consumer and the provider of the dataset is in place,

processing of the dataset may commence. Execution may take place within the Data

Sharing Platform, if the Data Sharing Platform supports such functions or, as is the case

of most UPCAST pilots, in the consumer’s space. If execution takes place in the

consumer site, a replica of the dataset must be securely transferred to the consumer

using the Secure Data Delivery plugin. The execution engine12 that is deployed in either

the Data Sharing Platform or the consumer site executes the Execution Specification

that results from the Data Processing Workflow modelling.

The UPCAST Monitoring plugin has two modules (the Monitoring module and the

Compliance module) as shown in the two orange boxes. Execution of the dataset

produces monitoring data that are fed to the Monitoring module. If execution takes place

in the Data Sharing Platform the monitoring data are fed directly to the Monitoring

module, otherwise they are fed to it through standard messaging technologies like

RabbitMQ or Apache Kafka. The Compliance module assures that processing of the

dataset proceeds according to the contract. It, therefore, receives the monitoring data

12 The execution engine is outside of UPCAST scope and is to be provided by the consumer or

the Data Sharing Platform. It can be any engine that can executes the processing specification,

for example, an execution engine that can run bash scripts if the processing specification can

be converted to bash scripts.

82

that are produced by the datasets being processed and the contract specifications and

produces alerts in case any violations are detected.

The monitoring data and the compliance data may also be visualized by a platform like

Mira for the provider to have a precise view of the progress of the processing of their

dataset and possible violations of the agreed contract with the consumer. Monitoring

data and data coming from the Compliance module are shipped to the visualization (for

example Mira) through a data bus.

The architecture shown in Figure 44 will be used for the developments of UPCAST. An

alternative architecture as shown in Figure 45 has also been assessed by UPCAST. The

architecture of Figure 45 separates the provider, the consumer and the Data Sharing

platform. Interactions between the provider and consumer take place directly between

them, while the Data Sharing platform takes the role of a broker that facilitates the

advertisement of dataset and searching for them. The architecture of Figure 45

introduces a new component, the UPCAST Engine, that is used to deploy and host

plugins to the provider and the consumer. The UPCAST Engine may replicate some of

the functionalities provided by the Data Sharing platform. Moreover, a Trusted Third

Party (TTP) is introduced to guarantee the safe processing of the dataset. The functions

of the TTP can be provided by the Data Sharing platform itself.

Figure 45: UPCAST alternative technical architecture.

UPCAST will use the architecture of Figure 44 for its developments as this architecture

complies with the project’s DoA that calls for the development of plugins for data

marketplaces instead of building the UPCAST Engine of Figure 45 that replicates the

functions of a typical Data Sharing Platform.

83

5 PILOT DESIGN AND FUNCTIONALITY – BIOMEDICAL AND

GENOMIC DATA SHARING

This pilot focuses on biomedical and genomic data sharing between NHRF and their

research partners. NHRF uses bioinformatics tools to analyse in-house generated

genomic data and explore molecular and clinical data from well-established cancer-

associated data repositories.

5.1 Roles and Stakeholders

As shown in Figure 46, NHRF acts as both resource/data consumer (utilising data from

research partners and data repositories in biomedical analysis) and resource/data

provider (sharing analysis results with others).

Figure 46: Roles and Stakeholders for the Biomedical pilot.

5.2 Reference Use Cases

Figure 47: Legend of the use case colours used for the pilot reference use cases.

84

Figure 48 presents the top-level use cases for the Biomedical and Genomic Data Sharing

pilot. These top-level use cases are detailed in Figure 49, Figure 50 and Figure 51. These

diagrams reuse the plugin use cases whenever possible where plugin use cases are

illustrated with the UPCAST Plugin name in namespace (parenthesis). The use cases are

distinguished in different colours as depicted in Figure 47. These conventions are

followed in the description of all pilot reference use cases in Chapter 5 – Chapter 9.

Figure 48. Top-level use case model for the Biomedical pilot.

For the <<Establish collaboration>> use case (Figure 49): This use case enables different

stakeholders to establish contractual agreements with NHRF for collaboration, including

definition of specific clauses, obligations and timelines and assurance of the

compliance of legal and ethical requirements. The UPCAST system will ensure that

formal declarations exist that patient consents are in place before contracts can be

established. It also includes a review and approval process for all involved parties to

reach agreements and establish contracts.

85

Figure 49. Establishing collaboration between NHRF and external resource providers.

For <<Integrate and harmonise biomedical data>> (Figure 50): This use case integrates

and harmonises biomedical data from different sources (data repositories). It allows to

define and execute data processing workflow that combine and analyse data effectively

for genomics research.

86

Figure 50. Integrate and harmonise biomedical data.

For the <<Share biomedical data>> use case (Figure 51): This use case offers a secure

data sharing framework for NHRF to share genomic data with data consumers. It also

facilitates the commercialisation of NHRF proprietary or curated genomic datasets.

87

Figure 51. Sharing biomedical data.

5.3 Business to Systems Mapping Model

Figure 52 shows how the top-level use cases of the pilot are implemented by the

UPCAST plugins.

88

Figure 52: Business to Systems Mapping Model for the Biomedical pilot.

5.4 Pilot Implementation Plan

NHRF researchers are defining Data Processing Workflows, constituting

implementations of algorithms by means of well-structured data processing scenarios.

The underlying tasks are typically executed by one or more software tools and

applications devised for scientific data processing. The latter can be math tools (e.g., R)

or Python scripts, but, in most cases, they refer to specialised bioinformatics software,

such as raw sequence data quality controllers, NGS aligners, NGS RNAseq and WES

analysers, annotators, functional analysers, etc. Execution takes place either at NHRF's

own infrastructure or processing resources provided by research and academic clouds.

The fundamental fuel of bioinformatics workflows is data. To this end, NHRF possesses

own datasets, and seeks for new datasets to be a leverage to NHRF research. There are

several sources, repositories and marketplaces for genomic data. Following UPCAST,

some of them are assumed to adopt UPCAST, thereby offering respective functionality.

For the rest, referred to as “legacy marketplaces”, it is assumed that discovered datasets

89

are imported “as is” (essentially comprising own datasets) or that are subject to some

UPCAST functionality (e.g., pricing).

The selected deployment scenario for the Biomedical pilot is depicted in Figure 53.

According to this, all UPCAST functionality is offered through an UPCAST-enabled

marketplace by means of plugins, whereas the execution of the Data Processing

Workflows themselves will take place on NHRF infrastructure (including other shared

research and academic facilities).

Figure 53: Deployment scenario for the Biomedical pilot.

90

6 PILOT DESIGN AND FUNCTIONALITY – PUBLIC

ADMINISTRATION

In this pilot, the Major Development Agency Thessaloniki (MDAT) and Open Knowledge

Foundation Greece (OKF Greece) will use the UPCAST plugins for integration and

exchange of all data related to the data driven environmental policy making of the

Metropolitan Area of Thessaloniki.

6.1 Roles and Stakeholders

As shown in Figure 54, MDAT-OKF acts as both data provider and data consumer in this

pilot.

Figure 54: Roles and stakeholders for the Public Administration pilot.

6.2 Reference Use Cases

Figure 55 shows the top-level use cases for the Public Administration pilot.

Figure 55. Top-level use case for the Public Administration pilot.

91

For <<Integrate and aggregate public administration data>> use case (Figure 56), MDAT-

OKF acts as a resource consumer, which integrates and aggregates the data based on a

defined data processing workflow. Using UPCAST plugins, MDAT-OKF can negotiate

with data providers in an automated way and at the same time respect data providers'

privacy conditions and requirements.

Figure 56. Integrate and aggregate public administration data.

For <<Share public administration data>> use case (Figure 57): MDAT-OKF publishes

datasets specified using domain-specific vocabularies and ontologies and the datasets

will be transferred securely to data users.

92

Figure 57. Share public administration data.

6.3 Business to Systems Mapping Model

Figure 58: Business to Systems Mapping Model for the Public Administration pilot.

Figure 58 shows how the top-level use cases of the pilot are implemented by the

UPCAST plugins.

93

6.4 Pilot Implementation Plan

In this pilot, the data marketplace operates on top of an open data repository (DKAN13)

and is under the ownership and management of MDAT.

MDAT will install DKAN in its own infrastructure. To benefit from the UPCAST services,

a selection of the UPCAST plugins will be installed as Docker containers in the same

infrastructure. The functionality provided by the UPCAST plugins will be available to

DKAN through Drupal modules that will be developed by OKF Greece.

More specifically, MDAT will undertake the task of mapping the environmental data

market in the metropolitan area of Thessaloniki and creating resource specifications for

relevant data.

Data providers encompass a diverse group, including public organisations, non-

governmental organisations (NGOs), civil associations, private companies, and even

individuals who collect sensor measurements for personal purposes.

Data consumers can belong to the same categories mentioned above, and they may also

include other entities interested in staying informed about international activities related

to data-driven environmental policymaking. They can share and compare practices, data,

and indicators with other European cities. Consumers will design data processing

workflows to discover pertinent datasets within the providers' repositories using the

Resource Discovery plugin.

To ensure privacy and usage control, the Privacy and Usage Control plugin will be

employed. The plugin will ensure that environmental datasets do not contain any

personal information and are fully anonymised. Additionally, the resulting datasets may

require cleaning, integration, and aggregation as part of the designed data processing

workflow.

Public entities, NGOs, civil associations, and private companies providing environmental

data may have specific requirements regarding how their data is used. To address these

concerns, the Negotiation and Contracting plugin will be utilised to facilitate agreements

and meet these requirements.

13 https://github.com/GetDKAN/dkan

https://github.com/GetDKAN/dkan

94

Figure 59: Deployment model for the Public Administration pilot.

95

7 PILOT DESIGN AND FUNCTIONALITY – HEALTH AND FITNESS
This pilot focuses on the valuation, sharing and trading of data streams related to health

and fitness data. Such data is collected from wearables and IoT-enabled fitness

equipment during physical activities. Nissatech is a company that operates fitness clubs

and provides a technical system for real-time monitoring for fitness based on wearables

and IoT environment.

7.1 Roles and Stakeholders

The main roles and stakeholders of this pilot are shown in Figure 60. Nissatech and

trainees are providers of the health and fitness data. Service providers (e.g., gym) and

product vendors (e.g., vendors of fitness equipment and supplements) are data

consumers. This pilot also aims for an efficient and secure monetisation of such health

and fitness data, and data trader is an important role for data monetisation. Data trader

is an actor that sells data to realise data monetisation. Data trader can be a Data Provider

or a Data Intermediary as defined by IDSA RAM 4.0. In line with the basic roles defined

in IDSA RAM 4.0, a Data Creator is an actor that produces data and a Data Owner is an

actor that executes control over data.

Figure 60: Roles and Stakeholders for the Health and Fitness pilot.

7.2 Reference Use Cases

Figure 61 shows the top-level use cases for the Health and Fitness pilot. The details for

the use cases <<Establish collaboration with trainees>>, <<Bundle and prepare

datasets>> and <<Trade data>> are shown in Figure 62, Figure 63 and Figure 64

respectively. For data monetisation, data providers (trainees) need to understand how

the data is "valuable" for potential data consumers and how the data price is formed. For

this purpose, the UPCAST Valuation plugin is used to valuate data contribution from

trainees to a data product (<<Suggest dataset valuation>> use case) so that the data

owners can decide if they want to do the monetisation and for how much as well as be

motivated to generate as much as possible such data.

96

Figure 61: Top-level use case model for the Health and Fitness pilot.

For <<Establish collaboration with trainees>> use case (Figure 62): Nissatech will

establish collaboration with trainees to collect and use their data. Data usage

constraints and policies will be defined and negotiated to establish contracts. This

process will ensure compliance with legal requirements, e.g., consent is given by the

trainees when they share data, and the data shared is compliant with GDPR.

Figure 62: Establish collaboration with trainees.

97

For <<Bundle and prepare datasets>> use case (Figure 63): Nissatech will make some

bundles of data to make a better offering. The new dataset will be described, and the

environmental impact and the price of the dataset will be estimated.

Figure 63: Bundle and prepare datasets.

For <<Trade data>> use case (Figure 64): the dataset to be traded will be published and

monetised and transferred securely to the data consumer.

Figure 64: Trade data.

7.3 Business to Systems Mapping Model

Figure 65 shows how the top-level use cases of the pilot are implemented by the

UPCAST plugins.

98

Figure 65: Business to Systems Mapping Model for the Health and Fitness pilot.

7.4 Pilot Implementation Plan

Figure 66 illustrates the deployment model for the Health and Fitness pilot. In this pilot

data providers and data consumers activate UPCAST-enabled plugins.

In Nissatech’s infrastructure, data is stored both on AWS servers for provider usage

(overview of their own data – fitness data) and at a dedicated server after anonymisation

for trading from where plugins are being activated.

Data providers have access only to their own data, and data consumers have access to

data samples (before purchase).

99

Figure 66: Deployment model for the Health and Fitness pilot.

100

8 PILOT DESIGN AND FUNCTIONALITY – DIGITAL MARKETING 1

In this pilot, JOT is offering market-related data to data consumers based on a new data-

as-a service business model. Data consumers can decide which data is needed and how

the data and insights should be delivered.

8.1 Roles and Stakeholders

As shown in Figure 67, JOT acts as both Data Provider and Service Provider to external

Data Consumers (Resource Consumer).

Figure 67: Roles and stakeholders for the Digital Marketing JOT pilot.

8.2 Reference Use Cases

The main use cases of this pilot are presented in Figure 68:

101

Figure 68. Top-level use case model for the Digital Marketing JOT pilot.

For <<Define service requirements>> (see Figure 69): The data consumer defines the

type of service requested and expected price, and provides information about dataset

needs and expected insights so that it can be possible to get value from the data and

adjust the service to the budget. JOT will be able to define the service providing the

datasets, including access and usage policies and rules for the data consumers. JOT

may negotiate terms with data consumer and establish contract in this process.

Figure 69. Define service requirements with Resource Consumer.

102

Figure 70. Prepare datasets.

For <<Prepare datasets>> (see Figure 70): JOT will generate data samples, which the

Data Consumer can check and confirm the attributes and formats. The Data Consumer

will define a service request based on a pre-defined set of filters and features. JOT will

generate the complete dataset as requested by the Data Consumer, estimate the

needed resources (processing and storage) and the customised price for the service

requested, define and negotiate the terms of the contract, and sign the contract with

the Data Consumer. JOT will also automatically generate database query based on the

Data Consumer needs so that the dataset requests can be managed with no/minor

manual actions.

103

Figure 71. Share data with Resource Consumer.

For <<Share data>> (see Figure 71): This use case implements different services,

including sharing data with Data Consumer using interactive and updatable dashboard

and report generation based on selected KPIs.

8.3 Business to Systems Mapping Model

Figure 72 shows how the top-level use cases of the pilot are implemented by the

UPCAST plugins.

104

Figure 72: Business to Systems Mapping Model for the Digital Marketing JOT pilot.

8.4 Pilot Implementation Plan

Figure 73 shows the general architecture for the TO-BE scenario for this pilot and the

main steps of the service flow in this TO-BE scenario. Figure 74 illustrates the technical

integration of the UPCAST plugins in the service flow. The JOT marketplace is populated

by the digital marketing performance data to identify user interests in any domain or

business verticals. The data consumer will have access to the data catalogue as well as

some examples in the web service, where it is also possible to define and request the

proper datasets. This process will then launch the needed plugins via dedicated APIs for

contract generation, workflow, resource specifications and so on.

Figure 73: Generic architecture for the TO-BE scenario (Figure 10 from D1.1).

105

Figure 74: Deployment model for the Digital Marketing JOT pilot.

106

9 PILOT DESIGN AND FUNCTIONALITY – DIGITAL MARKETING 2

This pilot focuses on data sharing between Cactus (a technology company specialising

in digital marketing and web development) and its clients. Cactus utilises client data to

provide optimal digital marketing tools tailored to individual clients and develop

marketing strategies aligned with the client's overall business goals. Cactus also shares

data (e.g., competitive intelligence reports) with competitors/partners to help them

identify areas for improvement.

9.1 Roles and Stakeholders

As shown in Figure 75, Cactus acts as both Resource Consumer (obtaining data from

clients and competitors/partners) and Resource Provider (sharing data with clients and

competitors).

Figure 75: Roles and stakeholders for the Digital Marketing Cactus pilot.

9.2 Reference Use Cases

The top-level use case model for this pilot is shown in Figure 76.

107

Figure 76. Top-level use case model for the Digital Marketing Cactus pilot.

Figure 77. Obtain data from clients and competitors.

For <<Obtain data from clients and competitors>> (Figure 77): Cactus will negotiate

terms with potential clients and obtain account information to gain access to the data

from clients and competitors. Cactus will define data processing workflows for the

digital marketing tools based on the data, negotiate the terms and establish the

108

contracts. This process will also define the usage and access control and ensure the

compliance with legal requirements. The defined data processing workflows will be

executed, and secure data transfer will be implemented to share clients/competitors

data with Cactus.

Figure 78. Share data with clients and competitors.

For <<Share data with clients and competitors>> (Figure 78): Cactus is the Resource

Provider (offering data to clients and competitors). The sharing of data includes

specification of the dataset to be shared, estimation of the dataset price, access and

usage control, legal assessment, negotiation of contracts, and secure data transfer.

9.3 Business to Systems Mapping Model

Figure 79 shows how the top-level use cases of the pilot are implemented by the UPCAST

plugins.

109

Figure 79: Business to Systems Mapping Model for the Digital Marketing Cactus pilot.

9.4 Pilot Implementation Plan

Cactus obtains data from clients, primarily from Google and Meta Cloud, creates digital

marketing tools based on data processing workflows. Cactus offers an online platform

with user-friendly interfaces to share data with clients, which allows the clients to control

the actions performed within the Cactus platform. They also sell data to competitors for

performance improvement. Figure 80 shows the deployment plan for the pilot. The

UPCAST plugins that will be utilized in the pilot will be deployed in an UPCAST-enabled

marketplace and provide the needed functionality for the pilot.

Figure 80: Deployment model for the Digital Marketing Cactus pilot.

110

10 CONCLUSION AND FUTURE WORK
This report presents the main features of the UPCAST MVP, the initial conceptual and

technical architecture for the MVP development, the elaborated pilot design and

functionality for demonstration of the MVP, and the initial input related to the vocabulary

and data model to be used in UPCAST MVP and pilots. The ARCADE framework is used

to design and document the initial UPCAST architecture and pilot design. This provides

a technical specification and guideline for the implementation of the MVP and pilot use

cases in the following project period.

Compared to D1.1, the following changes have been made in the organisation of plugins

in this version of UPCAST architecture:

• A new Federated Machine Learning plugin has been defined to provide Federated

Machine Learning functionality.

• The original Valuation and Pricing plugin has been separated into Pricing plugin

and Valuation plugin as they cover two different functionalities.

• The original Safety and Security plugin has been changed to Secure Data Delivery

to better reflect its intended functionality.

• The Legal Assessment horizontal service will consist of a human related part

(guidelines and policies to check) and a software-assisted automated part. The

automated part is considered as a function to be performed by the Negotiation

and Contracting plugin to ensure compliance with legal requirements.

This deliverable is an initial architecture specification and an initial input to the

vocabulary and data model. Some technical details (such as the detailed methods

defined for component interfaces) need to be clarified and further elaborated. The

following future work is planned to finalise the architecture, vocabularies and pilot

demonstration:

• Secure Data Delivery plugin: Only generic functionality is defined. Details on

further design and interface will be provided together with the new project partner

who will take over the responsibilities of this plugin.

• Federated Machine Learning plugin: Future work is needed to find out how this

plugin will be used and demonstrated in pilots.

• UPCAST technical architecture: UPCAST will implement the architecture

depicted in Figure 44 where data provider and consumers interact with

marketplace (or a data sharing platform in general), and UPCAST plugins are

deployed on the marketplace. Feedback will be gathered from pilot

demonstration to improve the initial architecture.

• Vocabulary and data model: Each plugin team will lead further iterations of their

corresponding data model facet hand in hand with the technical development of

the plugin. Technical coordinator will ensure alignment in monthly technical

meetings. We will liaise with Coordination and Support Action to evaluate if Data

Models currently being developed by other ongoing projects are useful for ours.

111

11 ACRONYMS
Table 25: Acronyms.

DoA Description of Action

DPW Data Processing Workflow

DSL Domain-Specific Language

EIO Environmental Impact Optimiser

MVP Minimum Viable Product

PDP Policy Decision Point

PUC Privacy and Usage Control

RC Resource Consumer

RP Resource Provider

UI User Interface

XAI Explainable AI

Acronyms List

