

0

2024

Draft Document

DELIVERABLE 1.3

THIS DOCUMENT IS IN DRAFT FORM AND PENDING OFFICIAL
APPROVAL. IT IS SUBJECT TO REVIEW AND MAY BE UPDATED.

UPCAST D1.3: Updated Project Concept and Architecture

 1

D1.3: Updated Project
Concept and Architecture

This project has received funding from the European Union’s Horizon Research
and Innovation Actions under Grant Agreement № 101093216.

UPCAST D1.3: Updated Project Concept and Architecture

 2

Title: Document version:

Updated Project Concept and Architecture 0.50

Project number: Project Acronym Project Tittle

101093216 UPCAST Universal Platform
Components for Safe Fair
Interoperable Data Exchange,
Monetisation and Trading

Contractual Delivery Date: Actual Delivery Date: Deliverable Type*-Security*:

M18 (June 2024) M19 (July 2024) Other-PU

*Type: P: Prototype; R: Report; D: Demonstrator; O: Other; ORDP: Open Research Data Pilot; E: Ethics.

**Security Class: PU: Public; PP: Restricted to other program participants (including the Commission); RE: Restricted to a group
defined by the consortium (including the Commission); CO: Confidential, only for members of the consortium (including the
Commission).

Lead Authors (organization):

Sofoklis Efremidis, Dimitrios Verlekis, Kostas Kalamboukas (MAGGIOLI)

George Lioudakis, Mariza Koukovini, Eugenia Papagiannakopoulou (ABOVO)

Shanshan Jiang, Gøran Svaland (SINTEF)

Soulmaz Gheisari, George Konstantinidis, Luis Daniel Ibanez, Semih Yumusak, Jaime Osvaldo Salas
(SOTON)

Aditya Grover, Hanene Jemoui (CEDAR)

Paraskevi Tarani (MDAT)

Charalampos Bratsas, Lazaros Ioannidis (OKFN)

Fernando Perales (JOT)

Majid Ektesabi (NOKIA)

Evangelos Kotsifakos (LSTECH)

Nenad Stojanovich, Milan Vuckovic (Nissatech)

Olga Papadodima (NHRF)

Anestis Stamatis (CACTUS)

Jeremy Decis (Dawex)

Abstract:

UPCAST D1.3: Updated Project Concept and Architecture

 3

Deliverable D1.3 reports on the updated UPCAST concept and MVP. An update of a typical workflow is
given along with an updated version of the architecture Moreover, the document provides updates of
the designs of the plugins and an overview and technical details of the two available marketplaces.
Finally, updates to the project’ pilots are given.

Keywords:

Software architecture, platform architecture, plugin integration, APIs, requirements, process workflow,
Legal Framework.

REVISION HISTORY

Revision: Date: Description: Author (Organization)

v0.10 8/01/2024 ToC Sofoklis Efremidis (Maggioli)

v0.11 22/01/2024 ToC update Sofoklis Efremidis (Maggioli)

v0.12 08/04/2024 ToC update Sofoklis Efremidis (Maggioli)

v0.13 13/05/2024 Update of Architecture Sofoklis Efremidis (Maggioli)

v0.20 9/7/2024 Incorporation of contributions Sofoklis Efremidis (Maggioli)

v0.25 22/7/2024 Incorporation of contributions Sofoklis Efremidis (Maggioli)

v0.50 30/7/2024 Update after internal review Sofoklis Efremidis (Maggioli)

This project has received funding from the European Union’s Horizon Research and Innovation Actions

under Grant Agreement Nº 101093216.

More information available at https://upcastproject.eu/

COPYRIGHT STATEMENT

The work and information provided in this document reflects the opinion of the authors and
the UPCAST Project consortium and does not necessarily reflect the views of the European
Commission. The European Commission is not responsible for any use that may be made of
the information it contains. This document and its content are property of the UPCAST Project
Consortium. All rights related to this document are determined by the applicable laws. Access
to this document does not grant any right or license on the document or its contents. This
document or its contents are not to be used or treated in any manner inconsistent with the
rights or interests of the UPCAST Project Consortium and are not to be disclosed externally
without prior written consent from the UPCAST Project Partners. Each UPCAST Project
Partner may use this document in conformity with the UPCAST Project Consortium Grant
Agreement provisions.

https://upcastproject.eu/

UPCAST D1.3: Updated Project Concept and Architecture

 4

Table of Contents

1 Introduction .. 8

1.1 Purpose of the Document ... 9

1.2 Scope of the Document ... 9

1.3 Structure of the Document .. 9

2 UPCAST Workflow .. 10

3 Background Technologies and Architectures .. 14

3.1 Open Technologies and Architectures ... 14

3.2 UPCAST Marketplaces .. 17

4 UPCAST Architecture ... 22

5 UPCAST Plugins and Interfaces .. 24

5.1 Resource Specification and Profiling ... 24

5.2 Semantic Profiling ... 32

5.3 Resource Publishing .. 33

5.4 Resource Discovery ... 34

5.5 Privacy and Usage Policy Plugin .. 34

5.6 Environmental Impact ... 44

5.7 Pricing ... 45

5.8 Data Processing Workflow Modelling .. 49

5.9 Federated Machine Learning .. 53

5.10 Data Integration and Exchange .. 55

5.11 Negotiation and Contracting ... 57

5.12 Secure Data Exchange... 67

5.13 Monitoring .. 71

5.14 Compliance... 75

5.15 Safe and Secure Execution ... 75

6 UPCAST Pilot Descriptions ... 80

6.1 Biomedical and Genomic Data Sharing ... 80

6.2 Digital Marketing Data and Resources... 81

6.3 Digital Marketing Data and Resources... 84

6.4 Sharing Public Administration for Climate .. 85

6.5 Health and Fitness Data Trading .. 86

7 UPCAST Integration with Marketplaces .. 88

7.1 Nokia Marketplace ... 88

7.2 Dawex Data Exchange ... 89

UPCAST D1.3: Updated Project Concept and Architecture

 5

8 Conclusions .. 90

9 References ... 91

ACRONYMS... 93

List of Figures
Figure 1: Core functionality of UPCAST MVP. ... 11

Figure 2: CKAN Architecture. .. 15

Figure 3: IDSA Reference Architecture Model. .. 17

Figure 4: Overview of the NOKIA Data Marketplace. .. 18

Figure 5: Nokia Data Marketplace Architecture. .. 18

Figure 6: Nokia Data Marketplace access workflow. .. 19

Figure 7: Dawex marketplace environment architecture. .. 19

Figure 8: Conformity of the Dawex API to standards. ... 20

Figure 9: Summary of Dawex features. .. 21

Figure 10: Typical uses of the Dawex marketplace. ... 21

Figure 11: UPCAST Architecture. .. 22

Figure 12: Provider Dashboard. .. 24

Figure 13: Provider Dashboard, List of Datasets. ... 25

Figure 14: Provider Dashboard, Dataset Creation, Step 1. .. 27

Figure 15: Provider Dashboard, Dataset Creation, Step 2. .. 27

Figure 16: Provider Dashboard, Dataset Creation, Step 3. .. 28

Figure 17: Provider Dashboard, Dataset menu. .. 29

Figure 18: Provider Dashboard, Dataset annotation plugins. .. 29

Figure 19: Provider Dashboard, List of dataset negotiations. ... 30

Figure 20: Provider Dashboard, Negotiations menu. .. 30

Figure 21: Provider Dashboard, List of datasets. ... 31

Figure 22: Provider Dashboard, New Dataset, Step 1. .. 31

Figure 23: Provider dashboard, Updated list of datasets. ... 32

Figure 24: Data Profiling API. ... 32

Figure 25: Data Model of Data Profiling. .. 33

Figure 26: Sequence Diagram of Data Profiling plugin. .. 33

Figure 27: Privacy and Usage Policy GUI, snapshot 1. .. 35

Figure 28: Privacy and Usage Policy GUI, snapshot 2. .. 35

Figure 29: Privacy and Usage Policy GUI, snapshot 3. .. 36

Figure 30: Data model of Rules showing modelling purposes as constraints. 39

Figure 31: Rule Creation form, general rule information and definition of applicable actions. 42

Figure 32: Rule Creation form - defining preActions and constraints upon action entities. 42

UPCAST D1.3: Updated Project Concept and Architecture

 6

Figure 33: goodFlows access and usage control rule data model. ... 43

Figure 34: The environmental plugin swagger interface. .. 44

Figure 35: Data model of the Environmental plugin. ... 45

Figure 36: UPCAST Static pricing plugin architecture. ... 46

Figure 37: OpenAPI3.0 of the Static Pricing plugin. ... 46

Figure 38: UPCAST Static Pricing interface. .. 47

Figure 39: UPCAST Static Pricing functions to obtain similar datasets in the market. 48

Figure 40: DPW modelling. ... 49

Figure 41: Dataset discovery .. 50

Figure 42: Properties of the discovered dataset. ... 50

Figure 43: Conflict identification prior to negotiation. .. 51

Figure 44: DPW API. ... 51

Figure 45: DPW Data model. ... 52

Figure 46: Interactions with the DPW plugin. ... 53

Figure 47: Federated Machine Learning plugin high level design. ... 55

Figure 48: Resource Specification. ... 58

Figure 49: Negotiations GUI. ... 59

Figure 50: Consumer Dashboard for datasets available for negotiations. 59

Figure 51: Consumer Dashboard for datasets available for negotiations. 60

Figure 52: Negotiations plugin API specification. .. 61

Figure 53: Negotiations plugin API specification. .. 62

Figure 54: Negotiation plugin Data Model. ... 63

Figure 55: One to one data exchange scenario... 69

Figure 56: One to many data exchange scenario. ... 69

Figure 57: Safe data delivery Plugin Architecture. ... 71

Figure 56: Table containing the user request for data set generation. .. 77

Figure 57: User interface showing the status of the user request. .. 78

Figure 58: Frontend interface elements of SIMPIPE. .. 79

Figure 61: Cancer Genomics workflow .. 81

Figure 62: “In-vitro gene expression” workflow. .. 81

Figure 63: Digital Marketing data specifications. ... 82

Figure 64: Business Case workflow model. ... 82

Figure 65: Digital Marketing workflows. .. 84

Figure 66: NDM REST API. .. 88

List of Tables
Table 1: Additional requirements for Negotiation. ... 67

Table 2: Dawex Secure Data Delivery capabilities. ... 69

UPCAST D1.3: Updated Project Concept and Architecture

 7

UPCAST D1.3: Updated Project Concept and Architecture

 8

1 Introduction

UPCAST, Universal Platform Components for Safe Fair Interoperable Data Exchange,
Monetisation and Trading, provides a set of universal, trustworthy, transparent and user-
friendly data market plugins for the automation of data sharing and processing agreements
between businesses, public administrations and citizens. The UPCAST plugins will enable
actors in the common European data spaces to design and deploy data exchange and trading
operations guaranteeing:

• automatic negotiation of agreement terms;

• dynamic fair pricing;

• improved data-asset discovery;

• privacy, commercial and administrative confidentiality requirements;

• low environmental footprint;

• compliance with relevant legislation;

• ethical and responsibility guidelines;

• Accountability, auditing, and compliance of dataset executions.

UPCAST will support the deployment of Common European data spaces by consolidating and
acting upon mature research in the areas of data management, privacy, monetisation,
exchange and automated negotiation, considering efficiency for the environment as well as
compliance with EU and national initiatives, AI regulations and ethical procedures. Five real-
world pilots across Europe will exercise a set of working platform plugins for data sharing,
monetisation and trading, deployable across a variety of different data marketplaces and
platforms, ensuring digital autonomy of data providers, brokers, users and data subjects, and
enabling interoperability within European data spaces. UPCAST aims at engaging SMEs,
administrations and citizens by providing a transferability framework, best practices and
training to endow users to deploy the new technologies and maximise impact of the project.

The work reported in this deliverable has been carried out in Work Package 1, UPCAST concept
and MVP definition, which addresses the following project objectives of the project:

• Objective 1: Apply models and standards to easily specify data processing
requirements in the context of common European data spaces,

• Objective 4: Enable interoperability of data sharing across different entities, platforms
and marketplaces,

• Objective 5: Provide a legal and ethical framework for automated contracts, and,

• Objective 8: Pilot and evaluate the platform in Real Market Dataspaces.
These project objectives will be achieved by WP1 through the following sub-objectives:

• Sub-objective 1.1 Establish the vision and direction for the project by defining a
Minimum Viable Product (MVP) and agreeing the technical and pilot requirements and
usage scenarios to achieve sustainability of the UPCAST set of tools. A methodology
to define the requirements and the MVP will be used to drive the process.

• Sub-objective 1.2 Define the data model and vocabularies for expressing the UPCAST
workflows, preferences and other features based on extending existing efforts in
GAIA-X and IDS.

• Sub-objective 1.3 Provide a legal framework based on European and National
regulations, best practices and ethics guidelines for UPCAST.

• Sub-objective 1.4 Define the UPCAST system architecture using best practices on
architecture specification in compliance with the data spaces, along with legal and
ethical aspects.

UPCAST D1.3: Updated Project Concept and Architecture

 9

1.1 Purpose of the Document

This document reports on the updated UPCAST concept and the updated architecture after
its elaboration and refinement following the analysis of the pilot and legal requirements,
details and technical capabilities of the marketplaces that will be used in the project and
updates in the project plugin technologies. D1.3 is a follow-up of Deliverable D1.1 and
Deliverable D1.2, which presents the first version of the UPCAST architecture and the UPCAST
MVP. D1.3 documents the technical design of the refined UPCAST architecture and pilot
demonstrations through the use of semiformal models and formal specifications. It also
describes the final version of vocabularies and data models that will be used by the UPCAST
plugins and the pilot demonstrations.

1.2 Scope of the Document

Deliverable D1.3 is a follow-up of Deliverable D1.1 that reports on the UPCAST concept and
requirements setup and D1.2 that reports on the UPCAST MVP and the UPCAST Architecture.
Similar to D1.2 it reports on the work that has been carried out in the following tasks:

• Task 1.1 (MVP Definition and Requirements for the Data Value Chain): definition of the

main features to be delivered in the UPCAST MVP;

• Task 1.2 (Pilot Design and Functionalities): the final pilot design and functionalities

based on elaboration of the initial pilot use cases and requirements;

• Task 1.3 (Vocabulary and Data Model): the initial input related to the vocabulary and

data model to be used in UPCAST MVP and pilots.

• Task 1.5 (UPCAST Tools Design and Architecture): the initial UPCAST architecture and

interface to develop the MVP.

D1.3 documents the update on the UPCAST pilot design and functionality using technical
models and diagrams that have been presented in D1.2.

1.3 Structure of the Document

The document is structured as follows: Chapter 2 gives an update of the UPCAST MVP.
Chapter 3 gives an overview of background technologies and architectures on which UPCAST
is based. Chapter 3.2.2.1 gives the technical specifications of the interfaces and data models
of the UPCAST plugins. Chapter 6 gives the descriptions and requirements of the UPCAST
pilots. Chapter 4 gives the updated UPCAST architecture and Chapter 7 gives the technical
details for integration of the UPCAST plugins to the two marketplaces of the project. Finally,
Chapter 8 concludes the document.

UPCAST D1.3: Updated Project Concept and Architecture

 10

2 UPCAST Workflow

UPCAST provides support for the management, negotiation, and exploitation of resources
through a set of plugins that can be installed in Data Marketplaces or other data sharing
platforms that can mediate data transactions between providers and consumers. A resource
can be a dataset, a data operation or an artefact (such as a machine learning model). This
chapter gives an overview of a typical workflow by a dataset provider and a dataset consumer
when they interact through the UPCAST platform.

The UPCAST Minimum Viable Product (MVP) is an implementation of the minimum
functionality of the UPCAST plugins (described in [1]) and integrated into a platform that
satisfies the prioritised requirements that have been selected based on the pilots’ needs and
project vision. The MVP will serve to gather valuable feedback for further development of the
UPCAST platform. The architecture of the UPCAST platform is given in chapter 4.

This chapter presents the interactions with the UPCAST MVP (UPCAST plugins and platform)
from a user perspective. In the context of this presentation, users of UPCAST are either
dataset providers or dataset consumers. Figure 1 illustrates the interactions with the core
functionality that is offered by the UPCAST MVP as a set of functions performed by or
provided to either the Dataset (Resource) Provider, the Dataset (Resource) Consumer, or in
some cases to both. The figure shows a typical sequence of actions the dataset provider and
the dataset consumer take as well as the components (plugins) that support these actions.

UPCAST D1.3: Updated Project Concept and Architecture

11

Figure 1: Interactions with the UPCAST MVP.

UPCAST D1.3: Updated Project Concept and Architecture

 12

For the UPCAST MVP definition the focus is on datasets, but some plugins are applicable for
other types of resources. The UPCAST plugins are modules that can be deployed on a data
marketplace (or other data sharing platforms) offer well-defined functionalities that enhance
or complement those in the host marketplace. Plugins interact with each other and with the
marketplace in which they are deployed through well-defined APIs. The users, i.e., resource
providers or resource consumers, can use those plugins that suit their needs and invoke them
through the provided interface (depicted as provider and consumer dashboard in Figure 1).

Figure 1 shows a representative user journey with activities that involve all of the UPCAST
plugins. The upper part of Figure 1 illustrates the actions of a resource provider who wants to
annotate and publish a dataset1 using UPCAST plugins. The preparation of a dataset
(collection of data, cleaning, and preprocessing) is a necessary action any provider needs to
take but it falls outside the scope of UPCAST. Therefore, the provider actions start with the
dataset annotation by which the provider describes the resource using basic metadata or
semantic metadata and defines access and usage policies. The provider may also assign an
environmental profile to the resource that relates to the energy and carbon consumption of
its generation and storage and may also associate a price or price range to it to facilitate its
monetisation. A typical sequence of actions by a provider who uses the UPCAST plugins is as
follows:

RP1. Define resource metadata: Using the Provider Dashboard, the provider creates a
resource specification and annotates the resource with basic and semantic metadata
using UPCAST vocabulary and domain-specific vocabularies.

RP2. Specify resource privacy and usage policy: Using the Privacy and Usage Control
Plugin through the Provider Dashboard the provider can define the privacy and usage
control policies for the resource.

RP3. Estimate resource environmental cost: Using the Provider Dashboard, the provider
can create the environmental profile for the resource. For datasets, this relates to the
collection and storage cost. For data operations, this relates to the cost of executing
the operation with the support of the Environmental Impact Optimiser Plugin.

RP4. Estimate resource price: Using the Provider Dashboard, the dataset provider can
assign a price or price range to the resource. The functions of the Pricing plugin may
be used to generate an informed price suggestion.

RP5. Publish resource: The dataset provider publishes the resource annotated with the
resource specification in a data marketplace or a data catalogue provided by a broker
so that potential consumers can discover the resource. This functionality is provided
by a broker or a marketplace. UPCAST Publishing/Discovery plugins may be used for
this functionality.

RP6. Negotiate terms and establish contract. The dataset provider and the dataset
consumer may need to negotiate terms of the policies expressed by the provider and
the usage intentions expressed by the consumer. Negotiation is an iterative process
supported by the Negotiation Plugin, which, if successful, will result into a contract that
forms the basis for a data processing workflow execution and verification for
compliance.

RP7. Monitor dataset execution and verify compliance. The dataset provider receives in
their dashboard continuous monitoring data from the execution of the dataset.
Monitoring data are used for checking compliance of the execution against the agreed
terms of the contract and any violations are notified to the provider. The same

1 This chapter focuses on datasets, but some plugins are applicable to other types of resources.

UPCAST D1.3: Updated Project Concept and Architecture

 13

monitoring data may be fed to supporting modules for generating analytics.

The lower part of Figure 1 illustrates the actions of a resource consumer who wants to make
use of a dataset resource. The first action of a consumer is typically to Define a Data
Processing Workflow (DPW, RC1) which may utilise one or more datasets (possibly from
several providers) to do the processing they need. The DPW may involve generic actions, like
transformations or aggregations on datasets, and also specialized actions like performing
Federated Machine Learning (FML) on datasets that are not allowed to be transferred outside
the domain of a dataset provider, valuation of a dataset, and integration of several datasets
collected possibly from multiple providers. These actions are implemented by respective
components as shown in Figure 1, and are not represented in the overall activities of the
dataset consumer, as they are special steps of the DPW the consumer models.

RC1. Define Data Processing Workflow: The consumer defines the processing workflow
for the dataset as a series of actions that pertain to the pre-processing and actual
processing of datasets using the Data Processing Workflow plugin. A DPW model is
defined, and the intended usage and the access and usage policies for the DPW are
specified.

RC2. Estimate consumer environmental cost. The consumer makes an estimate of the
environmental cost that will be incurred when processing the dataset. The cost is
estimated based on the workflow, and the characteristics of the processing
environment that will be used.

RC3. Search resource: The consumer searches and discovers resources to include in the
DPW by searching or browsing a Dataset Catalogue or getting suggestions on relevant
resources using the Resource Discovery plugin.

RC4. Negotiate terms and agree on contract: The dataset consumer negotiates with
resource providers regarding the terms of access, usage and pricing of the datasets.
The result of the negotiation, if successful, is a contract that states the terms of access
and usage, as well as the pricing of the dataset under negotiation. The negotiation and
contracting tasks are supported by the corresponding plugin that facilitates and
automates the negotiation process and can be used by the dataset producer (see RP6)
and consumer.

RC5. Secure data exchange: With the use of the Secure Data exchange plugin, the dataset
contracted will be transferred securely to a trusted environment, which in the case of
the UPCAST pilots is the consumer one, for processing.

RC6. Execute data processing workflow: Using Safe and Secure Execution Plugin, the
consumer starts the DPW execution for the processing of the dataset subject to the
terms of access and usage policies that have been negotiated and agreed between
the provider and the consumer and are expressed in the negotiation contract.

RC7. Monitor execution of data processing workflow: The UPCAST Execution Monitoring
plugin monitors the execution of the DPW. The collected monitoring data are used for
generating analytics for the provider and also for checking the compliance with the
agreed contract. The compliance plugin receives monitoring data and notifies the
dataset provider in case of any breaches of the contract (RP6), such as any access or
usage rule violated during the DPW execution.

The interactions with the UPCAST MVP of Figure 1 involve an overarching set of activities that
are foreseen by UPCAST that relate to the actions of the dataset provider and the dataset
consumer. Chapter 6 gives details of interactions with the UPCAST MVP for each of the
project pilots.

UPCAST D1.3: Updated Project Concept and Architecture

 14

3 Background Technologies and Architectures

This chapter presents open technologies and architectures that are relevant to UPCAST and
are key to the developments of the project. OpenAPI, an open formalism for specifying HTTP
interfaces, CKAN, an open-source Data Management Service, and IDSA Reference
Architecture, an open dataspaces architecture, are given in section 3.1. Moreover, the two
data marketplace platforms that are available to the project are presented in section 3.2.

3.1 Open Technologies and Architectures

3.1.1 OpenAPI

The OpenAPI2 is a widely used API description language. The OpenAPI Specification, formerly
known as Swagger, is an open specification for building machine-readable APIs for web
services. It provides a standardized way to describe REST APIs in a programming-language
agnostic manner, allowing humans and computers to discover and understand the
capabilities of the services without accessing the source code.

An OpenAPI document provides the interface description according to the OpenAPI
specification and describes the endpoints, methods (such as GET, POST, PUT and DELETE),
and data schema definitions of the API. It specifies the operations that an API can perform,
the parameters and data models it accepts, and the expected responses. Typically, the
OpenAPI documents are written in YAML or JSON.

The OpenAPI plays a key role in the API lifecycle. There is a wide range of OpenAPI tools3 that
facilitate the automatic generation of code, documentation, and test cases from OpenAPI
documents, such as OpenAPI editors, code generators, validators, and testing tools. For
example, tools are available to for automatically generate service- and client-side codes in
different programming languages from the OpenAPI documents, both accelerating the
interface implementation and ensuring the consistency between interface design and the
implementation.

3.1.2 CKAN

CKAN4 (Comprehensive Knowledge Archive Network) is an open-source (Data Management
System (DMS) for powering data hubs and data portals. CKAN is an evolution of the Debian
Linux package management capabilities, which is used by public institutions seeking to share
their data with the general public.

The CKAN technology shown in Figure 25 involves several core components:

• Routes and Views: Routes map URLs to views, which process requests and render
responses using Jinja2 templates. Views interact with the backend through action
functions.

• Logic Layer: This includes action functions, auth functions, and validation schemas.
Action functions handle CRUD operations and are exposed via the API.

• Models: SQLAlchemy is used for database interactions, but access should be through
model methods, not directly from other packages.

2 https://www.openapis.org/what-is-openapi

3 https://tools.openapis.org/

4 https://ckan.org/

5 https://docs.ckan.org/en/2.9/contributing/architecture.html

https://www.openapis.org/what-is-openapi
https://tools.openapis.org/
https://ckan.org/
https://docs.ckan.org/en/2.9/contributing/architecture.html

UPCAST D1.3: Updated Project Concept and Architecture

 15

• Plugins: CKAN’s functionality is extensible through plugins, which can define routes,
views, and override core functions.

Figure 2: CKAN Architecture.

CKAN provides a powerful API for accessing and managing datasets. The API allows users to
interact with CKAN programmatically, enabling the creation, updating, and querying of
datasets and resources. Key Features of the CKAN API include:

• Action API: This is the primary API for interacting with CKAN. It uses a JSON-based
protocol to perform various actions like creating datasets, updating metadata, and
retrieving data. The actions are categorized into core groups:

• Dataset and Resource Management: Create, update, and search for datasets and
resources.

• User and Organization Management: Manage user accounts, organizations, and
memberships.

• Tag and Group Management: Manage tags and groups associated with datasets.

• RESTful Interface: CKAN’s RESTful interface allows for straightforward HTTP
operations (GET, POST, etc.) on datasets, resources, and other objects. This makes it
easy to integrate CKAN with other web services and applications.

• Search API: The search functionality is robust, allowing for detailed queries on
datasets using Solr’s powerful search capabilities. This includes full-text search,
faceted search, and filtering based on metadata fields.

• Authentication: The API supports multiple authentication mechanisms, including API
keys and session-based authentication, ensuring secure access to the data and
operations.

UPCAST D1.3: Updated Project Concept and Architecture

 16

• Extensions and Plugins: CKAN’s API is extensible, allowing developers to create
custom endpoints and integrate additional functionality through extensions.

3.1.3 IDSA Reference Architecture Model

The International Data Spaces Association6 (IDSA) is a coalition of more than 150 member
companies from 28 countries that share the vision by which companies self-determine data
usage rules and realize the full value of their data in secure, trusted, equal partnerships. The
goal of IDSA is the definition of a global standard for sovereign data spaces and interfaces,
as well as fostering the related technologies and business models that will drive the data
economy of the future across industries.

IDSA focuses on the value of future data-driven global, digital economies whose functions are
expected to be based on the use of International Data Spaces (IDS). IDSs provide secure
environments for data sharing, which ensure that the self-determined control of data use (data
sovereignty) remains in the hands of data providers, and in which all participants can realize
the full value of their data.

The IDSA Reference Architecture Model7 is depicted in Figure 3. The model is made up of five
layers:

• The Business Layer specifies and categorizes the different roles which the participants
of the International Data Spaces can assume, and it specifies the main activities and
interactions connected with each of these roles.

• The Functional Layer defines the functional requirements of the International Data
Spaces, plus the concrete features to be derived from these.

• The Process Layer specifies the interactions taking place between the different
components of the International Data Spaces; using the BPMN notation, it provides a
dynamic view of the Reference Architecture Model.

• The Information Layer defines a conceptual model which makes use of linked-data
principles for describing both the static and the dynamic aspects of the International
Data Space’s constituents.

• The System Layer is concerned with the decomposition of the logical software
components, considering aspects such as integration, configuration, deployment, and
extensibility of these components.

In addition, the Reference Architecture Model comprises three perspectives that need to be
implemented across all five layers: Security, Certification, and Governance.

6 https://internationaldataspaces.org/

7 https://internationaldataspaces.org/wp-content/uploads/IDS-Reference-Architecture-Model-3.0-
2019.pdf

https://internationaldataspaces.org/
https://internationaldataspaces.org/wp-content/uploads/IDS-Reference-Architecture-Model-3.0-2019.pdf
https://internationaldataspaces.org/wp-content/uploads/IDS-Reference-Architecture-Model-3.0-2019.pdf

UPCAST D1.3: Updated Project Concept and Architecture

 17

Figure 3: IDSA Reference Architecture Model.

3.2 UPCAST Marketplaces

This section gives technical details of the two marketplaces that are available in the project,
the NOKIA Marketplace and the Dawex Marketplace.

3.2.1 Nokia Open Analytics Exchange

The Nokia Data Marketplace NDM, also referred to as Nokia Open Analytics Exchange,
solution (Figure 4) is ideally suited for connecting organizations that want to exchange data
with each other to optimize both internal and value chain processes. These collaborating
organizations define a business ecosystem.

The Nokia Data Marketplace is a decentralized data marketplace, powered by Blockchain
technology, for the safe and automated exchange of digital assets in the form of data streams.
The exchanged data streams are monetized and supported by technical and policy-based data
verification. The unique functions of the Nokia Data Marketplace, both for generating revenue
and for the exchange of data streams between interested parties in a business ecosystem,
are

• A private and permissioned Blockchain-technology that ensures network security, data
integrity, the use of smart contract, for fast and automated transactions (data
streams) and the use of micropayments based on a token economy

• Data verification, technical and policy-based via a hardware certification program and
with Nokia partnerships.

The Nokia Data Marketplace can be used to stream any type of data from any source type
such as administrative, IoT devices, physical assets, autonomous cars, drones, and many
more. Furthermore, it enables the business ecosystem to integrate 3rd party data and to
monetize it through the same marketplace. Analyses and reporting are provided on the basis
of the Nokia Data Marketplace computing capabilities, about the continuous transformation
in both the business ecosystem and the data assets. The Nokia Data Marketplace integrates
various 3rd party or Nokia products for orchestration of machine learning or Artificial
Intelligence solutions.

UPCAST D1.3: Updated Project Concept and Architecture

 18

Figure 4: Overview of the NOKIA Data Marketplace.

The architecture of the NDM is built based on microservice architecture as shown in Figure 5
and it facilitates the integration of additional feature on demand.

Figure 5: Nokia Data Marketplace Architecture.

There is no data storage on NDM and it never stores or processes the provider’s data. The
access to the data from the consumer is done through a hashed URL which is going through
NDM dProxy service as shown in Figure 6.

UPCAST D1.3: Updated Project Concept and Architecture

 19

Figure 6: Nokia Data Marketplace access workflow.

For the needs of UPCAST, a dedicated instance of NDM has been deployed and is available in
the Nokia cloud through the link https://upcast.dataexchange.nokia.com/.

3.2.2 Dawex Data Exchange Platform

This section give an overview of the Dawex Data Exchange platform8. The architecture of the
platform and its main features are presented.

3.2.2.1 The Dawex Data Marketplace environment architecture

The Dawex Data Marketplace environment architecture is shown in Figure 7.

Figure 7: Dawex marketplace environment architecture.

Dawex APIs rely on the use of common standards, as shown in Figure 8, to ease the
interoperability with third party services and technologies providers. By conforming to these

8 https://www.dawex.com/en/data-exchange-platform/

https://upcast.dataexchange.nokia.com/
https://www.dawex.com/en/data-exchange-platform/

UPCAST D1.3: Updated Project Concept and Architecture

 20

standards, the plugins will be able to easily interact with the Dawex Data Marketplace
environment provided to UPCAST.

Figure 8: Conformity of the Dawex API to standards.

3.2.2.2 Data Exchange Platform technology

Dawex Data Exchange technology delivers all necessary capabilities to manage data
exchanges under various business models, meeting compliance, security and privacy
requirements. A data exchange platform addresses the needs of the orchestrator operating
the platform as a trusted intermediary, as well as the needs of the data providers and data
acquirers engaged in trusted data transactions.

The Data Marketplace environment will integrate four universes to cover the overall data
exchange lifecycle:

● Explore: All exploration and search capabilities reunited in one place, from a fully

configurable homepage to the exploration tools like the data offerings and services

marketplace, the spatio-temporal exploration tool or the organization index.

● Publication: The participants can create, publish and update all their contents

available through the Data Marketplace (organization public profile, data offerings,

data services and data themes).

● Transactions: From discussion to data transaction, in this universe participants can

discuss and negotiate in the forum and follow all their past data transactions both as

a data provider and as a data acquirer to obtain the data and relevant documents and

metrics associated with these data transactions.

● Administration: The administration universe integrates the participant and

organization settings.

The Data Marketplace environment provided by Dawex covers hundreds of capabilities, and
thousands of detailed features. An overview is shown in Figure 9.

UPCAST D1.3: Updated Project Concept and Architecture

 21

Figure 9: Summary of Dawex features.

The user experience has been designed to be industrialized and scalable through a data
exchange governance model providing control, access, traceability and security (Figure 10).

Figure 10: Typical uses of the Dawex marketplace.

UPCAST D1.3: Updated Project Concept and Architecture

 22

4 UPCAST Architecture

This chapter presents the final version of the UPCAST Architecture. The architecture is an
enhancement of the one presented in [4], and will be used for the developments and
integration tasks of the project.

Figure 11: UPCAST Architecture.

Figure 11 shows the UPCAST Architecture. The Architecture shows the domains of the
Dataset Provider, the Dataset Consumer and the Data Sharing Platform, which is an
abstraction of a Data Marketplace. It is assumed that the Data Sharing Platform implements
the authentication of Providers and Consumers, and also provides the hosting environment to
which the components of the architecture (plugins) may be deployed or otherwise integrated.
The UPCAST Architecture is centralized as the Data Sharing Platform serves as the single
place of interaction between the Dataset Provider and the Dataset Consumer. UPCAST has
also assessed a distributed version of the architecture, in which the dataset provider and the
dataset consumer interact in a peer-to-peer manner with no intermediate Data Sharing
Platform. The authentication, persistency, and hosting for plugin deployments functions that
are provided by a Data Sharing Platform are crucial for the operation of the UPCAST platform
itself, therefore the project has opted for the centralised version of the architecture.

The UPCAST architecture shows the plugins (and corresponding functions) that are available
to the provider and those that are available to the consumer as well as dashboards for
visualization. A dataset provider uses a subset of the plugins to perform the specification of
the dataset resource to publish it in a marketplace. Resource specification includes the
annotation of the dataset with plain (type of data, format, creation time, etc.) and semantic
metadata, its environmental footprint for its storage by the provider, an estimate of its price,
and definition of usage and access policies. These functions are supported by the
corresponding plugins as shown in the architecture, which can be used through the Provider
Dashboard. Once a dataset resource has been annotated it can be published to a marketplace
for interested consumers to search for it.

UPCAST D1.3: Updated Project Concept and Architecture

 23

The consumer uses a subset of the plugins to specify a Data Processing Workflow to model
the processing they want to do on a dataset. Moreover, the consumer may also define policies
that is obliged to abide with, for example internal policies or legal regulations, and can also
estimate the environmental impact of the dataset execution that is modelled by the Data
Processing Workflow. Once these specifications are prepared through the corresponding
plugins, the consumer searches for datasets that meet their criteria. Once a dataset is
discovered, a negotiation takes place between the provider of the dataset and the consumer.
The negotiation is supported by the negotiation plugin and its purpose is for the provider and
the consumer to agree on the same terms for the dataset execution, as, on one hand the
provider has expressed his usage policies, and, on the other hand, the consumer has
expressed his own policies they may be subject to for the execution of the dataset. The
negotiation, if successful, will result in a contract, which, once agreed by both parties, is
secured for later checking compliance of the dataset execution with the terms of the contract.
The functions and respective plugins that are available to the consumer may be used through
the Consumer Dashboard.

Once a negotiation is completed and a contract has been agreed and signed, execution of the
data processing workflow on a dataset can be performed. The first step for the execution to
commence is to transfer the dataset from the provider to the consumer space. Once the
dataset has been securely transferred, a workflow execution environment is used to carry out
the execution. Execution may take place in various execution environments including the
consumer’s space, the marketplace, a trusted third party, or in the provider itself. The UPCAST
architecture has been shaped to show execution of the dataset only in the consumer space,
as the result of requirements expressed by UPCAST pilots.

One exception in the consumer processing is the case of Federated Machine Learning, in
which parts of the execution may take place in the provider’s environment, the reason being
that analytics processing of classified data may be allowed but the data itself may not be
allowed to leave the provider’s environment. In this case, the provider needs to provide a
hosting and execution environment for containerized FML components to execute, The
UPCAST architecture in Figure 11 contains a Federated Agent component, which abstracts
the parts of the execution that need to take place in the provider’s space. The Federated Agent
component is further highlighted through the surrounding box to indicate that such
components should be containerized.

Execution of the dataset is monitored through a number of metrics (detailed in section 5.13),
which the execution has the obligation to emit for the producer to verify compliance with the
contract.

Execution takes place in the consumer environment in a way that all elements of the
execution, including the actual workflow, the (dockerized) components used, the monitoring
metrics that are emitted, and so on, can be verified either in real time or in a later stage for
compliance to the terms of the contract that has been agreed and that executions are
reproducible and auditable. Real time monitoring and corresponding compliance is performed
by the Monitoring and Compliance plugins. If any violations are detected during the execution,
alerts are shown in the providers’ dashboard. Moreover, analytics processing of the
monitoring events that are collected during execution are also shown in the provider’s
dashboard.

UPCAST D1.3: Updated Project Concept and Architecture

 24

5 UPCAST Plugins and Interfaces

This chapter reports a summary of the plugins that are developed by project partners, their
functionality, interfaces, and data models. These plugins are shown in the UPCAST
architecture of Figure 11 and will be integrated into the final UPCAST platform.

5.1 Resource Specification and Profiling

Functionality: The Resource Specification and Profiling allows the specification and profiling
of dataset resources. It involves the tasks of preparing the dataset for publishing it to a
marketplace. The preparation tasks involve the annotation the dataset with metadata,
optionally environmental impact and pricing information, as well as policies for its usage and
access. Resource profiling uses the functions of plugins that are presented in following
sections.

Interface: The interface to the resource specification and profiling is a dashboard GUI that is
also the entry point is the entry point of the provider to the functions of UPCAST. This section
gives an overview of the initial designs of the provider’s dashboard, which is used for the
resource (dataset) specification and profiling. The dataset providers’ dashboard supports the
tasks of dataset annotation that are necessary before the dataset is published in a
marketplace and thus, becomes available for discovery, negotiation, and eventually
processing by potential consumers.

The resource specification and profiling dashboard is presented on the wireframes below,
which intend to showcase its functionalities.

The fields that are shown in some wireframes, such as datasets, negotiations, organisations
are tentative, and may be updated in the actual implementation to include additional
information, which may be necessary for the successful integration of the dashboard with
other UPCAST plugins.

Figure 12: Provider Dashboard.

UPCAST D1.3: Updated Project Concept and Architecture

 25

The provider’s dashboard is depicted in Figure 12. The dashboard provides overview
information of the most important elements that relate to the providers’ datasets,
marketplaces, and signed contracts while it offers shortcuts to frequently used functions. The
dashboard may be reached after successful authentication of the provider. The dashboard
includes the following elements:

1. Datasets: A list of all registered datasets by the provider. It also provides functions for

creating a new dataset.

2. Marketplaces: An overview of all marketplaces the provider has collaborated for

publishing their datasets and their settings. It providers functions to publish a dataset

to a marketplace.

3. Negotiations: A list of all negotiations, with functions to filter by dataset, or other

criteria.

4. Contracts: A list of all contracts, with functions to filter by dataset, marketplace or

other criteria.

Moreover, the page provides functions (on the upper right part) for:

a) Notifications on important events, like a new negotiation request, or the arrival of

monitoring events for an execution under an active contract, including alerts of

possible contract violations.

b) Profile editing, with settings that relate to account security, or the user’s organization,

and so on.

c) Logout button.

Customization of the dashboard, like selection of themes, is an option.

Figure 13: Provider Dashboard, List of Datasets.

In the Datasets List screen (Figure 13) provides a sortable list of available datasets along with
some important metadata. ID is a globally unique identifier of the dataset. The Status field
indicates the status of the dataset. When the dataset is annotated with metadata and
registered to the dashboard the status is set to “Saved”. After annotating the dataset with its
usage policies and profiles provided by other plugins, like pricing, and environmental

UPCAST D1.3: Updated Project Concept and Architecture

 26

parameters, the status is set to “Annotated”, which indicates that the dataset is ready to be
published. Finally, if a dataset has been published in at least one marketplace, the Status is
set to “Published”.

Other fields include useful statistics about the dataset, like the number of negotiations, or
contracts assigned to it. The new dataset button guides the provider through the creation
process for a new dataset.

A dataset must first be registered before it is published. Dataset registration includes the
specification of its metadata as part of its profile.

In accordance with the IDSA Data Model for the Dataspace Connector9 dataset registration
comprises three steps that reflect the corresponding layers implied in the data model:

1. Step 1: Dataset Information: Contains general information that describes the contents
of the dataset, to cover the Resource layer or the IDSA model.

2. Step 2: Format Information: Contains information on the media type, the file format, or
the encoding of the dataset implementation. Corresponds to the Representation layer
of the IDSA model.

3. Step 3: File information: Contains details about the actual file(s) containing the
dataset, and the contact point where the file is stored. Corresponds to the Artifact layer
of the IDSA model.

Figure 14 shows a wireframe design for the first step, in which the overview information of
the dataset, including its title, description, list of keywords, the timeframe of data collection
and version information is provided. A set of flags is also included that provide the following
information:

a) Whether the dataset has incomplete data, like empty fields, or potentially corrupt

entries.

b) Whether the dataset has duplicate data, like entries referring to the same object,

but collected more than once, either by multiple collection points, or due to

errors.

c) Whether the dataset contains unverified data, like potential outliers, or

measurement errors.

d) Whether the dataset is artificial, generated automatically through machine

learning processes or by compiling pre-existing data.

9 https://international-data-spaces-
association.github.io/DataspaceConnector/Documentation/v6/DataModel

https://international-data-spaces-association.github.io/DataspaceConnector/Documentation/v6/DataModel
https://international-data-spaces-association.github.io/DataspaceConnector/Documentation/v6/DataModel

UPCAST D1.3: Updated Project Concept and Architecture

 27

Figure 14: Provider Dashboard, Dataset Creation, Step 1.

The second step of the dataset registration shown in Figure 15 involves the specification of
the media type (text, image, video, audio) and also the file format of the dataset. Depending
on the dataset file format additional fields may be specified by the provider. For example,
Figure 15 shows the character encoding field, which may be specified for a dataset of text
format media type. Moreover, a sample of the dataset may also be uploaded.

Figure 15: Provider Dashboard, Dataset Creation, Step 2.

UPCAST D1.3: Updated Project Concept and Architecture

 28

In the third step of the registration process the actual files that implement the dataset are
specified as shown in Figure 16. These include:

a) File metadata like name, byte size or compression format.

b) Hosting information like connection point and file identifiers.

c) Authentication and access control information.

Figure 16 shows some indicative fields. The actual data used in this step depend on the
marketplace, or any other related dataset hosting platform.

Figure 16: Provider Dashboard, Dataset Creation, Step 3.

After creating a dataset, the provider can access it through the list of datasets that is shown
in Figure 17. The following tabs are included:

a) Overview, which will work as a mini dashboard specifically for the dataset showcasing

some key points for it.

b) Metadata, containing the information provided by the user during the registration

process. The information under this tab is separated in sections and shall be

presented either in an array format with an edit option on each mutable field (shown

on the left), or in a structured text format, with one single edit button in the bottom to

open up a pop-up menu with edit options (shown in the middle and right).

c) Plugins will provide access to the external plugin services used for the annotation of

the dataset.

d) Usage Policies, which will provide the user with an interface to pick actions and assign

rules to them, or even define new domain specific ones to augment the available

vocabulary. There, in accordance with the ODRL model, providers will set the initial

rules, which will be used as a starting point in the negotiation process.

e) Marketplaces, where providers will be able to publish datasets to a list of available

marketplaces.

f) Negotiations, where providers will access and manage negotiations for the dataset.

g) Contracts, where providers will access and manage contracts for the dataset. This

section could also be an entry point for the monitoring interface during execution time.

UPCAST D1.3: Updated Project Concept and Architecture

 29

Figure 17: Provider Dashboard, Dataset menu.

The majority of the dashboard tabs that remain are highly dependent on the data and
interaction with other services and will be customized during dashboard integration with the
data market sharing platforms. Nevertheless, some platform independent tabs are presented
in the following.

Figure 18 shows a screen for the integration with external plugins to further annotate the
dataset. Each plugin has two buttons. The first opens up a history of plugin invocations and
returns for this dataset, while the second activates the invocation to the plugin. Input data to
the plugin are provided through a popup window.

Figure 18: Provider Dashboard, Dataset annotation plugins.

UPCAST D1.3: Updated Project Concept and Architecture

 30

Figure 19 and Figure 20 show the negotiations for a particular dataset and all datasets of a
provider.

Figure 19: Provider Dashboard, List of dataset negotiations.

Figure 20: Provider Dashboard, Negotiations menu.

Both lists contain information on the consumer, which shall be fetched from the negotiation
plugin, or the marketplace where the negotiation takes place.

When a negotiation Is finalized, its status is set to “Agreed” or “Rejected” depending on the
outcome. During the process, when the last proposal comes from the provider, the status is
set to “Offered”, while when it comes from the side of a consumer, the status is set to
“Requested”. The terms are based on the negotiation states shown on the IDS negotiation
state machine (section 5.11).

UPCAST D1.3: Updated Project Concept and Architecture

 31

Figure 21 is a snapshot of the provider’s dashboard that shows the list of the provider’s
datasets, while Figure 22 is a snapshots of the provider’s dashboard that depict the first steps
for the creation of a new dataset, and Figure 23 shows the updated list of datasets, which
includes the one that has been created.

Figure 21: Provider Dashboard, List of datasets.

Figure 22: Provider Dashboard, New Dataset, Step 1.

UPCAST D1.3: Updated Project Concept and Architecture

 32

Figure 23: Provider dashboard, Updated list of datasets.

5.2 Semantic Profiling

Functionality: The Semantic Profiling plugin is used to enrich the annotation of a dataset
based on semantic information that can be deduced from references to the dataset,
associations with other similar datasets and so on. The semantic profiler to be used is
configurable, which allows for fine tuning of the profiling task.

Interface: Figure 24 shows an excerpt of the OpenAPI specification of the Data Profiling
plugin. The full OpenAPI specification for the profiling API is available at
https://github.com/EU-UPCAST/OpenAPISpecification/tree/main/profiling.

Figure 24: Data Profiling API.

Data Model: Figure 25 shows the data model of the semantic profiling. A dataset can have
multiple profiles generated using different profilers.

https://github.com/EU-UPCAST/OpenAPISpecification/tree/main/profiling

UPCAST D1.3: Updated Project Concept and Architecture

 33

Figure 25: Data Model of Data Profiling.

Typical usages: Figure 26 shows the typical interactions for using the profiling service, which
include (a) Connect and configure profilers; (b) get a list of available profilers; (c) generate a
profile for a dataset using a selected profiler; and (d) get a profile for a specific dataset.

Figure 26: Sequence Diagram of Data Profiling plugin.

5.3 Resource Publishing

Functionality: The Resource Publishing plugin is a set of services designed to support the
publishing of resources to ensure they are discoverable, i.e., the management of a resource
catalog. Similar to the Discovery plugin, the Resource Publishing plugin includes a web service
API for integration and is configured using a Docker Compose file. The following services are
included: API Service, SOLR Engine, PostgreSQL, and a CKAN Backend Service. The plugin
services can be executed using Docker commands, which are detailed in the plugin repository.

Interface: The Resource Publishing plugin API provides multiple endpoints to manage the
lifecycle of resources, including adding, updating, and deleting resources, as well as making
them discoverable through indexing. Here, we outline the technical steps to utilize these API
endpoints with a sample UI.

There are two main functionalities supported by the Resource Publishing plugin: (1) publishing
datasets and (2) managing resource metadata. Publishing datasets involves indexing the

UPCAST D1.3: Updated Project Concept and Architecture

 34

datasets to make them searchable, while managing resource metadata allows for updating
and maintaining the discoverability of resources.

The OpenAPI specifications of the Resource Publishing plugin are at https://github.com/EU-
UPCAST/OpenAPISpecification/blob/main/discovery_plugin/publish/openapi.yml

5.4 Resource Discovery

Functionality: The Discovery plugin is a set of services, including a web service API for
integration. The services are configured in a Docker Compose file, which contains the
following services: API Service, SOLR Engine, PostgreSQL, and a CKAN Backend Service. The
Discovery plugin services can be run using Docker commands, which are listed in the plugin
repository.

Interface: The Discovery plugin API consists of multiple endpoints that manage the complete
lifecycle of datasets, including adding, updating, deleting, and searching datasets within the
index, as well as discovering similar resources (see ANNEX II). Below, we describe the
technical steps to run these API endpoints with a sample UI.

The plugin supports two types of discovery: (1) dataset search and (2) resource search.
Dataset search can include multiple parameters for making a Solr query, filtering, sorting, and
producing faceted results. To make a dataset searchable, it needs to be added to the index.

The OpenAPI Interface specifications of the Resource Discovery plugin are at
https://github.com/EU-
UPCAST/OpenAPISpecification/blob/main/discovery_plugin/openapi3_1.yaml

5.5 Privacy and Usage Policy Plugin

Functionality: The privacy and usage policy plugin allows data providers to define access and
usage policies over a resource using terms from a default or custom ontology. If users are
registered, users can save created policies, upload ontologies to expand the list of terms that
can be used in policies. In addition, for the special case of data providers being private
citizens, a data consumer can create, configure and send request forms to data providers
requesting consent for usage of their data that may contain personal data. On the data
provider side, they can check if there are any requests forms sent to them, and then opt in or
out of these requests.

Interface: The GUI of the Privacy and Usage Policy plugin are shown in Figure 27, Figure 28,
Figure 29.

https://github.com/EU-UPCAST/OpenAPISpecification/blob/main/discovery_plugin/publish/openapi.yml
https://github.com/EU-UPCAST/OpenAPISpecification/blob/main/discovery_plugin/publish/openapi.yml
https://github.com/EU-UPCAST/OpenAPISpecification/blob/main/discovery_plugin/openapi3_1.yaml
https://github.com/EU-UPCAST/OpenAPISpecification/blob/main/discovery_plugin/openapi3_1.yaml

UPCAST D1.3: Updated Project Concept and Architecture

 35

Figure 27: Privacy and Usage Policy GUI, snapshot 1.

Figure 28: Privacy and Usage Policy GUI, snapshot 2.

UPCAST D1.3: Updated Project Concept and Architecture

 36

Figure 29: Privacy and Usage Policy GUI, snapshot 3.

Data Model: The Open Digital Rights Language (ODRL) is used to model policies. ODRL is a
policy expression language that provides a flexible and interoperable information model,
vocabulary, and encoding mechanism for representing statements about the usage of content
and services. The following are several elements that may appear in an ODRL policy:

An Asset is a resource or a collection of resources that are the subject of a policy. It
can be any form of identifiable (by an IRI) resource, such as data/information,
content/media, applications, services, or physical artefacts. On the other hand, an
Asset Collection is an Asset that represents a set of resources as a single resource. It
is used to indicate that all members of the set will be the subject of the policy.

A Party is an entity or a collection of entities that undertake functional roles in a policy,
such as a person, collection of people, organisation, or agent. An agent is a person or
thing that takes an active role or produces a specified effect. Like Assets, they are
usually identified by an IRI.

A Party Collection is a Party that is a single entity representing a set of member
entities. This indicates that all the members of the set will undertake the same
functional role in the Rule. A Party Collection may have any number of refinement
property values of type Constraint.

An ODRL policy may be one of three different types: an offer if the policy is defined by a data
provider, a request if it is issued by a data consumer, and an agreement if it is the result of a

UPCAST D1.3: Updated Project Concept and Architecture

 37

successful negotiation. Formally, an ODRL policy may be defined as a set of rules ℜ =
{ℛ1, ℛ2, … , ℛ𝑛} that combine to specify permissions, restrictions, or obligations on a variety
of legal entities.

Formally, a Rule is a 5-tuple ℛ = (𝒜, 𝐷𝑃, 𝐷𝐶, 𝒫, 𝒯), where 𝒜 is the real-world action (of type
Action), often a data process, to which this rule applies to; DP and DC are the assigner and
assignee of the rule, respectively (both of type Party); 𝒫 denotes the purpose of the action;
and 𝒯 is the Asset, or in our model, the (sub-)dataset that is the subject of the rule. Elements
that are common to every rule in a policy can be expressed at the level of the policy. A Rule
may be one of three, disjoint types that determine the semantic meaning of the rule: a
Permission, a Prohibition, or an Obligation.

In addition, ODRL allows for the definition of simple logical expressions called Constraints.
Constraints are boolean/logical expressions that can be used to refine the semantics of an
Action and Party/Asset Collection or declare the conditions applicable to a Rule. Constraints
can be represented as a Constraint or Logical Constraint. A Logical Constraint will refer to
existing Constraints as its operands. When multiple Constraints apply to the same Rule,
Action, Party/Asset Collection, then they are interpreted as conjunction that must all be
satisfied.

A constraint contains the following elements: a left operand (of type odrl:LeftOperand), a
relational operator, and a right operand that can be a literal value, an IRI or, if the operator is
set-based, a set of the former. If the comparison returns a match the Constraint is satisfied,
otherwise it is not satisfied. Some constraints

In our model, a constraint is a 3-tuple 𝑐 = (𝜆, 𝑜𝑝, 𝜌) where the left operand λ is a class property,
the operator is a binary operator op (as defined in the ODRL specification), and the right
operand ρ is a literal value with a datatype or (if op is odrl:isA) a class name. We assume that
an ontology has been provided that defines class hierarchies and class properties. The
operator op can be any of the following binary operators: odrl:equals (=), odrl:gt (>), odrl:gteq
(≥), odrl:lt (<), odrl:lteq (≤), odrl:neq (≠), odrl:isA (or rdf:type), odrl:hasPart (⸧), odrl:isPartOf (⸦),
odrl:isAllOf (≡), odrl:isAnyOf (∈), and odrl:isNoneOf (∉). The semantic interpretation of a
constraint is that the values of the class property λ are compared to the value ρ by the binary
operator, which may be true or false. We proceed to describe the formulation of ODRL
constraints as logical formulae. Let 𝑖𝑑(𝑒) be a function that outputs a variable unique to an
ODRL element e, and 𝑝𝑎𝑟𝑒𝑛𝑡(𝑒) be a function that returns 𝑖𝑑(𝑒′) if e is an element at the level
of 𝑒′ (e.g., for a rule ℛ, 𝑝𝑎𝑟𝑒𝑛𝑡(𝒜) is 𝑖𝑑(ℛ)), we may express c as the following logic formula:

𝑓(𝑐) = {
 𝜆(𝑝𝑎𝑟𝑒𝑛𝑡(𝑐), 𝑖𝑑(𝑐)) ∧ 𝜌(𝑖𝑑(𝑐)) 𝑖𝑓 𝑜𝑝 = 𝑖𝑠𝐴

𝜆(𝑝𝑎𝑟𝑒𝑛𝑡(𝑐), 𝑖𝑑(𝑐)) ∧ (𝑖𝑑(𝑐) 𝑜𝑝 𝜌) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

A refinement 𝑅 = {𝑐1, 𝑐2, … , 𝑐𝑛} is a set of constraints, whose purpose is to filter the instances
of a class or members of a dataset to those for which every constraint in the refinement holds
true. As a logical formula, it can be expressed as the conjunction of all constraints that
comprise it:

𝑓(𝑅) = ⋀ 𝑓(𝑐𝑖)

𝑐𝑖∈ℛ

A Logical Constraint is used for expressions which compare two or more operands which are
existing Constraints by one logical operator. If the comparison returns a logical match, then
the Logical Constraint is satisfied, otherwise it is not satisfied. For example, three Constraints
could be logically and-ed indicating that all three must be true for the Logical Constraint to be
satisfied. A Logical Constraint must have one operand indicating the logical relationship of
the compared existing constraints; the operand must be or, xone, and andSequence.

UPCAST D1.3: Updated Project Concept and Architecture

 38

Constraints may be used to define usage policies; some Instances of Usage Policy Patterns
are as follows:

• Allow the Usage of the Data (provides data usage without any restrictions).
• Interval-restricted Data Usage (provides data usage within a specified time interval).
• Duration-restricted Data Usage (allows data usage for a specified period starting from

access).
• Location Restricted Policy.

• Perpetual Data Sale (Payment once).
• Data Rental (Payment frequently).
• Role-restricted Data Usage.
• Purpose-restricted Data Usage Policy.
• Restricted Number of Usages (allow data usage for n times).

• Security Level Restricted Policy (allow data access with a specified security level).

• Use Data and Delete it After (allows data usage within a specified time interval with
the restriction to delete it at a specified time stamp).

• Attach Policy when Distribute to a Third-party.
• Distribute only if encrypted.

In our model, a logical constraint is a pair 𝑏 = (𝑅, 𝑜𝑝) where 𝑅 is a set of constraints and op is
a Boolean operator that determines the truth value of b depending on the values in 𝑅. In
particular, a refinement 𝑅 is semantically equivalent to a logical constraint 𝑏 = (𝑅, 𝑜𝑝) where
op is the logical conjunction (odrl:And).

An Action indicates an operation that can be exercised on a target Asset (data source). It may
have any number of refinements that refine the semantics of the operation. The ODRL
Information Model defines two top-level Actions:

– use - actions that involve general usage by parties.
– transfer - actions that involve in the transfer of ownership to third parties.

In our model, the action of a rule is a pair 𝒜 = (𝐴, 𝑅) where A is either a class name (sub-class
of dpv:Action) or an IRI referencing an instance of a dpv:Action or odrl:Action, as defined in
the relevant ontology (default is ODRL and DPV), and 𝑅 is its refinement. If A is a class name
C and 𝑐 ∈ 𝑅 is a constraint 𝑐 = (𝑐𝑙𝑎𝑠𝑠𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝑜𝑝, 𝑣𝑎𝑙𝑢𝑒), then 𝒜 encompasses actions of
type C whose property classProperty when compared to value by the operator op is true. When
translated into ODRL (in JSON-LD syntax), it should look as follows:

Where 𝐴, 𝐿𝑖, 𝑜𝑝𝑖 , 𝑅𝑖 are translated into their respective string representations. Finally, we may
express the action as the following logical formula:

𝑓(𝒜) = ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑜𝑛(𝑝𝑎𝑟𝑒𝑛𝑡(𝒜), 𝑖𝑑(𝒜)) ∧ 𝐴(𝑖𝑑(𝒜)) ∧ 𝑓(ℛ)

The assigner of a rule DP is an IRI that references an instance of an odrl:Party. On the other
hand, the assignee of a rule is a pair 𝐷𝐶 = (𝑁, 𝑅) where N is either a class name or an IRI
referencing an instance of an odrl:Party, and 𝑅 is its refinement. If N is an odrl:Party and 𝑅 is
a refinement over some of its members, then the assignee is an odrl:PartyCollection. Then,
expressed as a logic formula, we get the following:

𝑓(𝐷𝑃) = ℎ𝑎𝑠𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑟(𝑝𝑎𝑟𝑒𝑛𝑡(𝐷𝑃), 𝐷𝑃)

𝑓(𝐷𝐶) = ℎ𝑎𝑠𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑒(𝑝𝑎𝑟𝑒𝑛𝑡(𝐷𝐶), 𝑖𝑑(𝐷𝐶)) ∧ 𝑁(𝑖𝑑(𝐷𝐶)) ∧ 𝑓(𝑅)

In standard ODRL, the purpose that is subject of a rule can only be expressed as a constraint,
using the left operand odrl:purpose. Following the analysis of UPCAST requirements, we
introduce the following innovation:, A purpose can be assigned directly as an element of a
rule, and is formalised as a pair 𝒫 = (𝑃, 𝑅) where P is a class name (sub-class of dpv:Purpose),
and 𝑅 is its refinement. It is expressed as a logic formula as follows:

UPCAST D1.3: Updated Project Concept and Architecture

 39

𝑓(𝒫) = ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒(𝑝𝑎𝑟𝑒𝑛𝑡(𝒫), 𝑖𝑑(𝒫)) ∧ 𝑃(𝑖𝑑(𝒫)) ∧ 𝑓(𝑅)

The target of a rule is a pair 𝒯 = (𝐷, 𝑅) where D is either a class name or an IRI referencing a
dataset or instance of odrl:Asset, and 𝑅 is its refinement. If D is an odrl:Asset and 𝑅 is a
refinement over some of its members, then the target is an odrl:AssetCollection. Of special
note is a constraint 𝑐 ∈ 𝑅 of the form 𝑐 = (𝑢𝑝𝑐𝑎𝑠𝑡: 𝑞𝑢𝑒𝑟𝑦, 𝑜𝑑𝑟𝑙: 𝑒𝑞, 𝑄) where Q is a query in a
standard query language syntax (e.g., SQL or SPARQL). In this case, the target is 𝑄(𝐷) or the
result of the execution of Q over D. As a logical formula:

𝑓(𝒯) = ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡(𝑝𝑎𝑟𝑒𝑛𝑡(𝒯), 𝑖𝑑(𝒯)) ∧ 𝐷(𝑖𝑑(𝒯)) ∧ 𝑓(𝑅)

If the target has a constraint that specifies a query with head 𝑄(𝑥⃗) and body 𝑄1(𝑥1⃗⃗⃗⃗⃗) ∧ … ∧
𝑄𝑛(𝑥𝑛⃗⃗⃗⃗⃗), then:

𝑓(𝒯) = ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡(𝑝𝑎𝑟𝑒𝑛𝑡(𝒯), 𝑥⃗) ∧ 𝑄1(𝑥1⃗⃗⃗⃗⃗) ∧ … ∧ 𝑄𝑛(𝑥𝑛⃗⃗⃗⃗⃗) ∧ 𝑓(𝑅)

The logical formula for a rule ℛ

𝑓(ℛ) = 𝑓(𝒜) ∧ 𝑓(𝐷𝑃) ∧ 𝑓(𝐷𝐶) ∧ 𝑓(𝒫) ∧ 𝑓(𝒯)

Figure 30: Data model of Rules showing modelling purposes as constraints.

Describe data model of interactions between APIs. ODRL policies created through this plugin
can be passed to the Negotiation plugin, where it will be part of the UPCAST offer or request
in the negotiation plugin.

Serialisation to JSON-LD

We serialise the action 𝒜 = (𝐴, 𝑅) as follows:

“action”: A

 “refinement”: [

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑖 ∈ 𝑅:

 {“leftOperand”: 𝜆𝑖,

 “op”: 𝑜𝑝𝑖,

 “rightOperand”: 𝜌𝑖}

]

]

We serialise the assigner DP and assignee 𝐷𝐶 = (𝑁, 𝑅) as follows:

UPCAST D1.3: Updated Project Concept and Architecture

 40

“assigner”: DP,

“assignee”: N

 “refinement”: [

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑖 ∈ 𝑅:

 {“leftOperand”: 𝜆𝑖,

 “op”: 𝑜𝑝𝑖,

 “rightOperand”: 𝜌𝑖}

]

]

We serialise the purpose 𝒫 = (𝑃, 𝑅) as follows:

“constraint”: [

 {“leftOperand”: “Purpose”,

 “op”: “eq”,

 “rightOperand”: P},

 {“and”: [

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑖 ∈ 𝑅:

 {“leftOperand”: 𝜆𝑖,

 “op”: 𝑜𝑝𝑖,

 “rightOperand”: 𝜌 𝑖}

]

 }

]

We serialise the target 𝒯 = (𝐷, 𝑅) as follows:

“target”: D

 “refinement“: [

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑖 ∈ 𝑅:

 {“leftOperand”: 𝜆𝑖,

 “op”: 𝑜𝑝𝑖,

 “rightOperand”: 𝜌𝑖}

]

]

“rule”:

 “action”: A,

 “assignee”: DC,

 “assigner”: DP,

 “target”: D

 “constraint”: [

 P,

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑖 ∈ 𝑅:

 {“leftOperand”: 𝜆𝑖,

 “op”: 𝑜𝑝𝑖,

 “rightOperand”: 𝜌𝑖}

]

UPCAST D1.3: Updated Project Concept and Architecture

 41

]

In the above serialization, “rule” can be either “permission”, “prohibition” or “duty” depending
on the type of rule. Each of the elements of a rule is replaced with its corresponding
serialisation, as defined above.

policy”:

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ ℛ ∈ ℜ:

 ℛ

]

Typical usages: A data consumer needs fitness data from users subscribed to their service
for training personalisation. (0) The data consumer uploads ontologies that define terms such
as fitness data, and purposes such as training personalisation (that cannot be found in the
default ontologies ODRL and DPV). (1) The data consumer configures a new request form by
specifying the general ontology, domain specific ontology and data schema ontology. (2) The
data consumer chooses the data they wish to request (extracted from the data schema
ontology), the purpose (selecting training personalisation from the ontology) and the data
processing operations (extracted from the domain specific ontology) and the datetime
interval during which they need the data. (3) The data consumer adds other more specific
ODRL-compliant constraints through the UI. (4) The data consumer submits the request form,
which is then sent to all data providers subscribed to the service. From the data provider side,
a subscriber will (1) be informed that they have a request pending. (2) Access the policy plugin
where they can click on the request form. (3) The data provider can opt in or out of providing
any of the data in the request form, which will (4) produce an ODRL policy describing the
permissions and prohibitions, which will be sent back to the data consumer.Consumer side:

Functionality: Consumer-side PUC provides the functionality for specifying an organisation’s
internal policies that regulate its operations against a variety of provisions; in the general case,
these may originate from applicable legislation (e.g., the GDPR) or other operational and data
governance considerations. The user may create, update and delete access and usage control
rules. Management of generic organisation-specific and legislation-related rules is provided
by a dedicated UI and includes conflict resolution between rules and rules merging, i.e.,
mechanisms for the elimination of deprecated policies (i.e., overridden by other policies), as
well as identification of conflicts between resource provider’s access and usage constraints
and resource consumer’s access and usage intentions and subsequent suggestions for
conflict resolution.

Interface: The OpenAPI specification for the Consumer-side PUC is available at:
https://github.com/EU-UPCAST/OpenAPISpecification/tree/main/privacy_plugin/Consumer.
Users may define and manage the policies of their organisations via the goodFlows Policy
Model Editor, as shown in Figure 31 and Figure 32.

https://github.com/EU-UPCAST/OpenAPISpecification/tree/main/privacy_plugin/Consumer

UPCAST D1.3: Updated Project Concept and Architecture

 42

Figure 31: Rule Creation form, general rule information and definition of applicable actions.

Figure 32: Rule Creation form - defining preActions and constraints upon action entities.

Data Model: At the consumer-side, access and usage control rules are defined by means of
the goodFlows Access and Usage Control model, a design choice made for leveraging and
building upon existing functionality of goodFlows related to the management of rules
(inheritance of rules across hierarchies, complex reasoning algorithms for rule combination

UPCAST D1.3: Updated Project Concept and Architecture

 43

and conflict resolution among rules) and the verification of DPWs against the underlying
policy model. The respective rule language is in line with the ODRL vocabulary, allowing for
the rather straightforward translation between the two languages; RP’s constraints expressed
in ODRL generated upon Resource Specification are translated into the underlying semantic
policy language and vice versa in order to assist the negotiation procedure.

In goodFlows, an access and usage control rule is modelled through the following structure
(Figure 4):

where act is the action that the rule applies to; pu is the purpose for which act is
permitted/prohibited/obliged to be executed; cont is a structure of contextual parameters;
preAct is a structure of actions that should have preceded; postAct refers to the action(s) that
must be executed following the rule enforcement.

Actions constitute conceptual triples of {actor, operation, resource, organisation} and are
formed leveraging the entities of the Information Model. In more detail, action’s entities are
defined as a tuple ⟨concept, constraint⟩, where concept is a semantic type, and constraint is an
expression (or a logical relation thereof) assigning values to attributes and/or sub-concepts
of the given entity. This mechanism allows the definition of access and usage control rules
inline with the Attribute-based Access Control (ABAC) paradigm. For this, appropriate
concepts are provided, including Expressions, the instances of which provide for modelling
atomic constraints with a subject and a value, and Variables, that allow the specification of
concepts in relation to other concepts (e.g., set the value of a resource’s constraint to be
relative to the semantic type of the actor), thereby maximising expressiveness.

Figure 33: goodFlows access and usage control rule data model.

Typical usages: The consumer defines organisation-specific access and usage control rules
and rules prescribed by applicable regulations (e.g., GDPR). Any DPW designed by the
consumer will be first verified against these rules in order to be compliant with the consumer’s
internal policies. The DPW reflects the intentions of the consumer regarding datasets offered
by providers; for the latter, specific access and usage constraints apply, expressed in ODRL
by the providers, which are translated to the consumer’s policy language in order for the DPW
to be also checked against them and conflicts identification and possible resolution to take
place.

UPCAST D1.3: Updated Project Concept and Architecture

 44

5.6 Environmental Impact

Functionality: The environmental impact optimiser plugin includes efficient AI models, power
monitoring and visualisation tools to estimate the environmental impact of a data processing
workflow, by profiling datasets based on their potential impact and calculating energy metrics
such as estimated carbon footprint. The plugin estimates the energy consumption and
intensity of a dataset based on its metadata and hardware information where the resource is
created, stored or processed. This will be used to create an energy profile for each resource.
Furthermore, using Explainable AI (XAI) techniques, the end user will obtain transparent
feedback on the algorithm’s decision to assign a particular energy profile to a dataset.
Interface: Figure 34 shows the REST API Swagger interface. There are three endpoints: one
to estimate the dataset energy consumption at idle, one to estimate the data processing
workflow energy consumption and the third endpoint to explain the energy consumption
estimation. The current Open API specification is available in the project’s GitHub repository
https://github.com/EU-UPCAST/OpenAPISpecification/tree/main/environmental_plugin

Figure 34: The environmental plugin swagger interface.

Data Model: Figure 35 shows the data model of the environmental plugin. The plugin inputs
and outputs respect the upcast data model.

https://github.com/EU-UPCAST/OpenAPISpecification/tree/main/environmental_plugin

UPCAST D1.3: Updated Project Concept and Architecture

 45

Figure 35: Data model of the Environmental plugin.

Typical usages: The environmental plug-in can be used by a provider to estimate the energy
consumption and intensity of a resource storage at idle based on its metadata and on
information of the hardware where the resource will be stored. It can also be used by a
consumer to estimate the DPW energy consumption based on its metadata and on
information of the hardware where it will be executed.

5.7 Pricing

Functionality: The data pricing plugin aims to provide sellers and buyers with a hint of the

market price of a dataset taking as inputs its metadata features and based on market prices

observed in already existing commercial marketplaces, as well as similar datasets existing in

the market and a normalised classification of the dataset. The plugin allows the users to:

– Find data products sold in the market similar to an input description

– Find a reasonable price range for an input data product

– Find an explanation for the suggested price range, including the most relevant features

affecting the price prediction and the most relevant words in the description.

UPCAST D1.3: Updated Project Concept and Architecture

 46

Figure 36: UPCAST Static pricing plugin architecture.

Figure 37 shows an excerpt of the OpenAPI specification of the pricing plugin. The full

specification is available at https://github.com/EU-UPCAST/pricing-plugin.

Figure 37: OpenAPI3.0 of the Static Pricing plugin.

Additionally, a front end was developed to allow users to interact with the application in a
more friendly way, and to demonstrate the functionality of the API. The front end provides
basic functionality to call the Pricing API endpoints and visualize the results and explanations
as shown in Figure 38 and Figure 39.

https://github.com/EU-UPCAST/pricing-plugin

UPCAST D1.3: Updated Project Concept and Architecture

 47

Figure 38: UPCAST Static Pricing interface.

UPCAST D1.3: Updated Project Concept and Architecture

 48

Figure 39: UPCAST Static Pricing functions to obtain similar datasets in the market.

Data Model: The pricing plug-in will rely upon the data about data products and data vendors

from different commercial marketplaces to support the work in [2] and [3].

The fields and features used to specify data products and obtain a price have been included
in the vocabulary of UPCAST.

Typical usages: The pricing plugin can be used in several steps of the go-to-market process
of a data product. First, it can be used to point to other relevant vendors and products offering
similar services when designing the data products. Second, it can be used by data providers
as a first reference to set the price of data products advertised in data marketplaces.
Moreover, it can be used by data consumers as a reference to get an idea of the budget
required for a sourcing operation, or as a market reference to decide whether the price asked
by a seller falls within a reasonable interval according to prices observed in the market. Finally,
it could be helpful in negotiation processes to help both parties agree on the price of data
products involved in a data transaction.

UPCAST D1.3: Updated Project Concept and Architecture

 49

5.8 Data Processing Workflow Modelling

Functionality: This plugin enables the specification of UPCAST Data Processing Workflows
(DPWs), serving as the primary means through which data consumers state their intentions
for the data they seek to acquire. These intentions are derived from jointly considering a
variety of aspects, including: the processing operations intended to be performed; the entities
in direct or indirect control of their execution; the attributes of the acquired data and the
conditions under which any processing and exchange is meant to take place; the stated
purposes that the DPW in question is intended to serve. As such, DPWs constitute the basis
for subsequent negotiation on the data consumer side. Part of the DPW modelling
environment is shown in Figure 40.

Figure 40: DPW modelling.

Furthermore, this plugin allows the resource consumer to interact with other UPCAST plugins,
comprising the entry point to several UPCAST offerings and functionalities, thereby playing
the role of the consumer dashboard. In this context, the plugin enables the consumer, upon
the specification of a data processing workflow, to search and discover dataset to be used
within the workflow, to define environmental and pricing constraints, to invoke the
corresponding plugins in order to assess environmental impact and calculate fair pricing,
while comprising the consumer’s gateway towards negotiating the acquisition of datasets.

Figure 41 illustrates dataset discovery from within the workflow modelling environment,
Figure 42 assumes that a dataset has been discovered and depicts its properties, whereas
Figure 43 showcases the conflicts identified that will result in the initiation of the negation
process. In the bottom right of these wireframes, the buttons for defining and viewing
environmental and pricing constraints are shown.

Interface: Figure 44 is an excerpt of the OpenAPI specification of the DPW modelling. The full
specification is available at https://github.com/EU-
UPCAST/OpenAPISpecification/tree/main/privacy_plugin/Consumer

https://github.com/EU-UPCAST/OpenAPISpecification/tree/main/privacy_plugin/Consumer
https://github.com/EU-UPCAST/OpenAPISpecification/tree/main/privacy_plugin/Consumer

UPCAST D1.3: Updated Project Concept and Architecture

 50

Figure 41: Dataset discovery

Figure 42: Properties of the discovered dataset.

UPCAST D1.3: Updated Project Concept and Architecture

 51

Figure 43: Conflict identification prior to negotiation.

Figure 44: DPW API.

Data Model: UPCAST DPWs are defined as ontologies, based on an appropriate metamodel
called Workflow Model Ontology (WMO). According to this, a DPW is a graph where tasks are
the nodes, and the edges define the sequence of application, as well as overall data and
control flow (Figure 45). A DPW is meant to serve one or more purposes, intended to be

UPCAST D1.3: Updated Project Concept and Architecture

 52

initiated by specific entities or entities with particular characteristics, and is linked to a given
execution environment through proper interaction with the Environmental plugin.

Edges carry Information Entities that define the nature of data to be transferred from one task

to the next. A wmo:InformationEntity may refer to a specific dataset, or describe transferred

data in abstract terms, through a data type and potential additional constraints. An edge may

also be characterised by flow conditions and constraints, further specifying and/or restricting

the occurrence of implied transition.

A TaskNode has one to several execution profiles. An ExecutionProfile describes an actor that

applies an operation (implemented by a DataProcessingTask) on an Asset (often a Dataset),

subject to some task conditions. More specifically, wmo:ActorEntity instances denote the

entities assigned with the execution of tasks. They may be defined at either concrete (e.g., a

particular person or organisation) or abstract level (e.g., some role and possibly additional

constraints). Asset Entities represent the objects on which tasks are performed, meaning that

they are accessed, processed or modified for the purpose of delivering the corresponding

functionalities. They can similarly be defined in either concrete or abstract terms. In UPCAST

they are typically expected to refer to (types of) datasets.

The wmo:OperationEntity describes the type of functionality executed at each workflow step,
and is mapped to an odrl:Action. It is primarily defined at an abstract level, through the
corresponding operation type, and linked to its concrete materialisation through the
upcast:implementedBy property.

Figure 45: DPW Data model.

Typical usages: At this point, the typical interactions that have been specified to involve the
DPW plugin include the following (Figure 46): 1) Define a new DPW with known —i.e., already
discovered— datasets (step 1); 2) Validate the DPW against both internal organisational
policies as well as dataset provider’s constraints, making use of the functionalities of the PUC
plugin (step 2); 3) View the validated form of the DPW, together with visualisations of potential
conflicts with individual data providers (step 3); 4) Per provider, accept their preferences as
declared in the resource specification by means of the ODRL policies, and update the DPW
accordingly, in order to proceed with the agreement through interaction with the Negotiation

UPCAST D1.3: Updated Project Concept and Architecture

 53

plugin (step 4); 5) Alternatively, initiate negotiation by invoking the Negotiation plugin (step 5),
whereby any potential conflicts returned by the PUC are communicated to the user (steps 610,
7); 6) View the results of the negotiation per provider (step 8); 7) Validate the DPW taking into
account any existing negotiation results (step 9).

Figure 46: Interactions with the DPW plugin.

Integrations with additional plugins are expected with the second version of the DPW plugin,
as is, for instance, the case with the Discovery plugin for the dynamic identification of
matching datasets.

5.9 Federated Machine Learning

Federated Machine Learning (FML) is a machine learning technique that enables training
models on distributed datasets without the need to centralize the data. In FML, the model is
trained across multiple decentralized edge devices or servers holding local data samples,

10 This step is introduced to ensure that any modifications to the DPW following step 5 are accounted
for.

UPCAST D1.3: Updated Project Concept and Architecture

 54

without exchanging them. This approach addresses critical issues around data privacy,
security, access rights, and heterogeneous data.

There are multiple benefits of FML:

• Data Privacy: Raw data never leaves the local devices, protecting user privacy.

• Regulatory Compliance: Helps in complying with data protection regulations like

GDPR.

• Reduced Data Transfer: Only model updates are shared, reducing bandwidth usage.

• Access to Diverse Data: Enables learning from a wide range of data sources without

centralization.

• Continuous Learning: Models can be updated frequently with fresh, real-world data.

• Scalability: Can handle large numbers of participants and huge amounts of

decentralized data.

• Reduced Central Storage Need: No need for a large central data repository.

• Collaboration: Allows multiple organizations to collaborate without sharing sensitive

data.

A usage scenario in the context of UPCAST is as follows, a Data Consumer needs to train a
Machine Learning model. She discovers in a Data Marketplace multiple Data Providers that
own data that could be useful to train the model. However, the usage constraints of the Data
Providers prohibit the transfer of data outside of their premises. Providers are still interested
in doing business with Data Consumer and are willing to use their own computational
resources to collaborate with the Consumer without having to transfer data.

We regard FML as a special kind of Data Operation, we assume the FML plugin is available in
the resource catalog of the Data Marketplace used (or IDSA DataApp Store). Its metadata can
be then used as a step in a Data Processing Workflow, connecting the FML plugin with the
rest of the UPCAST infrastructure. The continuation of the usage scenario above is as follows:

1. The Data Consumer creates a Data Processing Workflow including a FML step. For ease

of exposition, we assume FML is the only step.

2. The Data Consumer negotiates with each provider the usage conditions of each dataset,

assisted by the DPW plugin to check there are no conflicts between the agreements of

multiple providers.

3. Once all negotiations have been successfully completed, the FML plugin provides the Data

Consumer and Data Providers with the setup need to train a Machine Learning model in a

Federated way.

Figure 47 describes the general setup of the FML plugin. The central server coordinates the
learning process and aggregates model updates. Clients (edge devices or local servers) train
the model on their local data. Only model updates are shared, not the raw data.

UPCAST D1.3: Updated Project Concept and Architecture

 55

Figure 47: Federated Machine Learning plugin high level design.

An important condition that needs to be agreed during negotiation is that Data Providers must
make available computing infrastructure to participate in the Federated training of a ML
model. They must be able to install the FML plugin agent on their server and their server should
be able to run a machine learning process on the local data.

5.10 Data Integration and Exchange

Functionality: In a data integration/exchange scenario, we have a number of distributed data
sources, associated schema mappings, target/ontology dependencies, and a query to answer.
There are two prevalent approaches to answering the query. Data Exchange (DE) uses
“forward-chaining” algorithms to compute the entailment closure of the schema mappings
and the ontology axioms. A prevalent formalisation of these algorithms is the chase family of
algorithms which consolidates the data to a centralised warehouse ready for query answering.
Virtual Integration, also known as Ontology Based Data Access (OBDA), or Ontology Mediated
Query Answering, query rewriting, or “backward-chaining”, processes the ontology axioms and
mappings “backwards” (from consequent to premise) in order to rewrite the query such that
it can be answered directly over the sources.

Our UPCAST Data Integration Operation is essentially an entire framework for combining
different algorithms, implementations and systems in an end-to-end approach to Data
Warehousing (DW) or Virtual Integration (VI). Our framework identifies and packages a
number of DW and VI systems writing translators, parsers and integration code to combine
and easily transfer between these implementations. Providing a unified framework allows us
to investigate systems’ limits and their interplay. We also make it easier to answer a query by
combining algorithms from both approaches, for example, using the chase on the source-to-
target mappings (not the data) to produce an equivalent setting with chased mappings and
without target dependencies, then using a query rewriting algorithm to answer the query over
the new source-to-target mappings. In this initial design, we present our framework
infrastructure, set of tools, and functionalities via a user web interface.

In our work we build upon the ForBackBench, a framework that creates a unified approach to
compare several DW/VI systems. ForBackBench comes with a set of common forward- and
backward-chaining systems, common testing scenarios from literature, and preintegrated
converter tools to simplify the comparing and evaluation process, allow automated testing,
and allow for easier extension in the future. The query-answering systems that initially became

https://github.com/georgeKon/ForBackBench/tree/main

UPCAST D1.3: Updated Project Concept and Architecture

 56

available on ForBackBench were classified in three groups: query rewriting (Rapid, Iqaros,
Graal, Ontop, OntopR, GQR), chase (RDFox, Rulewerk, Llunatic), and hybrid systems
(ChaseGQR). Through a command-line interface and a web interface, the user of the
framework can run end-to-end experiments on combinations of query-answering systems and
scenarios, build new scenarios by providing ontology or TGDs files, and generate data with
different sizes.

Additionally, the command-line interface allows the user to run any converter as a stand-alone
tool. The full details of ForBackBench functionalities are available in [4].

Although the backward-chaining systems included as part of ForBackBench came mostly
from the Ontology-Based Data Access (OBDA) area of SW, the forward-chaining systems
came from the state-of-the-art data exchange technologies in the DB domain. For our UPCAST
DI Operator we are integrating in ForBackBench state-of-the-art ontology materialisation
engines from the SW domain. This is bridging the gap between the DB and SW areas in DI/DE.

Our method includes end-to-end translation algorithms and implementation between the most
common SW mapping languages (OBDA mappings, R2RML, and RML) and TGDs. We will
integrat state-of-the-art ontology materialisation systems into ForBackBench such as: Morph-
KGC, RMLMapper, and SDM-RDFizer. We have already published an initial round of
experiments pointing out the different ways algorithms and engines are used and shedding
light on the performance of these systems.

Data Model: In data integration/exchange settings there are two families of schemas: a
source schema and a target/mediating schema. The mappings between the two kinds of
schemas, as well as ontology axioms/constraints on top of the target schema, can be
expressed via schema-mappings. In the database community these mappings are
represented by database dependencies known as Tuple-Generating Dependencies (TGDs),
where source-to-target TGDs express mappings between the source and the target, and target
TGDs express dependencies on the target schema [6], [7]. In the semantic web community
description logics, in particular, the DL-LiteR family of description logics [8] and the associated
OWL2 QL profile, are used to represent the target ontology [9], while mapping languages such
as R2RML [10], RML [11], [12], and OBDA-mappings [13] are used to express the mappings
between the data sources and the target ontology [8].

These are standard data models and languages that we don’t reproduce here. The extension
we have worked is translations between mapping languages. We focus on the mapping
translation between SW mappings (that use triples) and DB mappings (that use rules).

Mappings to TGDs Translation In some cases, mappings languages use “Skolem” or “built-in”
functions that cannot be encoded into TGDs in a straightforward manner. For instance, the
following example shows an OBDA mapping object that creates new values for the arguments
of 𝑛𝑠:𝐸𝑚𝑝𝐼𝑛𝑓𝑜 by combining multiple columns of the source tables. Therefore, we introduce
a new sub-language of TGDs: Skolem source-to-source TGDs. A Skolem ss-TGD(Σ𝑠𝑠) is a TGD
of the form ∀ , 𝑦(𝜑(𝑥,𝑦) → 𝜓 (𝜇(𝑥), 𝜇(𝑦))) where 𝜇 can be an arbitrary user-defined function
(initially we limit ourselves to string concatenation).

Example

UPCAST D1.3: Updated Project Concept and Architecture

 57

Definition 1. For all TGDs 𝜎 of at most arity two, 𝜎 is a Skolem source-to-source TGD if (1) 𝜑
and 𝜓 are over the source schema, (2) 𝜑, the body, is an SQL query, (3) 𝜓, the head, is a
ChaseBench query, where 𝜇, the arguments, are concatenation functions of multiple columns
of source tables.

For ontology materialisation scenarios we implement two phases: the offline phase, where we
convert OBDA, RML, or R2RML mappings to TGDs (see the example above) and the online
phase, where we generate and load data for the new source tables. The choice of supported
mapping languages was guided by the current scope of our framework, which is mostly
limited to relational DBs.

For each source-to-target (st) TGD mapping (we assume/-transform TGDs to have a single
head atom), we define a triple map (𝑆, 𝑃, 𝑂, 𝜙) where the TGD head atom translates (via the
natural way) into 𝑆, 𝑃, 𝑂 and 𝜙 is a generated SQL query reflecting the TGD body. Every
mapping language (OBDA mappings, R2RML, or RML) contains a “target” that can be
constructed from 𝑆, 𝑃, 𝑂 and a logical source in SQL or CSV. Thus we appropriately translate
our triple map to a chosen language. We can also support translating back to a mapping
language from a scenario that includes both st-TGDs as well as our own Skolem ss-TGDs
(thus reverting the example), in which case the SQL query 𝜙 is obtained from the Skolem ss-
TGDs (since it appears explicitly). If we have Skolem ss-TGDs, we use the namespaces
contained in them; otherwise, we invent an example namespace for the final mapping.

Typical Usage: The typical usage for our UPCAST DI Operator will involve: (1) selecting the
data sources, (2) selecting the target schema and format, (3) specifying the schema
mappings, (3) specifying a query (optional for the data warehousing case), (4) selecting our
own implementation or any custom algorithm to run either data warehousing (forward-
chaining), or virtual integration (query rewriting/backward-chaining), (5) running and getting
the data output of the integration. These will be available as API calls, integrated with the DPW
editor, or our (currently under development) standalone web interface.

5.11 Negotiation and Contracting

Functionality: This plugin is designed to streamline the complex processes of negotiation and
contract management. It facilitates efficient communication and collaboration between data
producers and data consumers by providing a centralized platform. Users can easily initiate,
conduct, and finalize negotiations, discussing usage policies, pricing and environmental
impacts as the resource description features, Data Processing Workflows (DPWs), and other
details.

Moreover, the plugin includes robust contract management features, allowing parties to
create, review, sign, and execute contracts with ease. By automating routine tasks and
offering customizable DPWs, it enhances data sharing while ensuring compliance with
regulatory requirements.

UPCAST D1.3: Updated Project Concept and Architecture

 58

Major changes since D1.2: In D1.2 resource consumer has defined the DPW including
resources owned by third parties. Applying GoodFlows, after defining a DPW and a request,
the consumer can generate a request.

Additionally, we can assume a stand-alone scenario that the resource consumer searches the
Data Catalogue for a resource. Finding the proper resource, the consumer fetches the
resource specification and its ODRL offer from the Data Catalogue and generates a request.

Interface: The negotiation and contracting plugin within the UPCAST platform, has three key
interfaces to function effectively:

1. User Interface (UI): Provides a user-friendly interface for resource producers and
consumers to initiate and manage negotiations. UI Includes dashboards, forms for
inputting negotiation terms, and tools for tracking progress and updates.

2. Application Programming Interface (API): Facilitates communication between
resource producers and consumers, as well as contract management. Negotiation API
enables automated data exchange, retrieval of resource specifications, and integration
with databases.

3. Data Processing Interface: Manages the execution of Data Processing Workflows
(DPWs) as per negotiated term. This interface handles data input, processing tasks,
and output generation while ensuring compliance with agreed policies and
procedures.

User Interface (UI) has a resource specification form and two main dashboards for resource
producer and resource consumer. Via the sample resource specification form shown in Figure
48 producers can create detailed resource specifications, including metadata, privacy
policies, and pricing information. This functionality is provided for the case the Negotiation
plugin is used as standalone and not integrated to the UPCAST platform, in which case the
provider dashboard presented in section 5.1 is used.

Figure 48: Resource Specification.

UPCAST D1.3: Updated Project Concept and Architecture

 59

A resource producer can manage negotiations through the producer dashboard that is shown
in Figure 49. Producers can view a list of ongoing negotiations, track their status, and respond
to consumer offers. The interface provides real-time updates and actions that can be taken
for each negotiation.

Figure 49: Negotiations GUI.

The producer interface displays a list of negotiations, detailing information such as
negotiation ID, name, date, status, and available actions. Producers can agree, finalize, or
terminate negotiations based on the current status.

The resource consumer dashboard shown in Figure 50, and Figure 51 provides an interface
for consumers to start a negotiation by sending a request based on the existing offers and is
intended to be used when the negotiation plugin is used as a standalone functionality. The
consumer dashboard that is integrated in the UPCAST platform includes functions for DPW
modelling, discovery of datasets, and is presented in section 5.8. Consumers can also
negotiate on various aspects, including price, usage terms, and data delivery conditions by
updating the requests. Moreover, consumers have the option to accept a producer's offer,
verify an agreement sent by a producer, or terminate a negotiation.

Figure 50: Consumer Dashboard for datasets available for negotiations.

UPCAST D1.3: Updated Project Concept and Architecture

 60

Figure 51: Consumer Dashboard for datasets available for negotiations.

Application Programming Interface (API) provides several endpoints to facilitate the
negotiation process, including but not limited to:

– Resource Management: Endpoints for creating, updating, and publishing resources.
– Negotiation Management: Endpoints for initiating, responding to, and finalizing

negotiations.
– Contract Management: Endpoints for generating and managing contracts post-

negotiation.

The API ensures secure and efficient data exchange, supporting JSON and other relevant data
formats (Figure 52, Figure 53). Detailed API documentation and usage examples are available
at UPCAST API Documentation.

http://62.171.168.208:8001/docs#/

UPCAST D1.3: Updated Project Concept and Architecture

 61

Figure 52: Negotiations plugin API specification.

UPCAST D1.3: Updated Project Concept and Architecture

 62

Figure 53: Negotiations plugin API specification.

Data Processing Interface provides an interface for resource consumers to initiate a request
by discovering a resource and generating a DPW, as well as update DPWs during negotiations.
This interface has been provided by Data Processing Workflow modelling and is depicted in
Figure 40.

Data Model: The UPCAST negotiation plugin allows users to create, offer, request, and
negotiate data sharing contracts. UPCAST contracts extend the usage control specification
defined by International-Data-Spaces-Association (IDSA), which in turn uses the Open Digital
Rights Language (ODRL), enabling more descriptive and technology-independent contracts.
UPCAST contracts also utilize other ontologies such as Data Privacy Vocabulary (DPV), which
defines an ontology that allows for the definition of the use, processing and purpose of
processing of data under relevant legislation, notably the GDPR.

Figure 54 shows the data model of the negotiation and contracting plugin. The model is
compliant to the extent possible with the model that supports the IDSA Dataspaces
Negotiation Protocol comprised of a back and forth of Offers and Requests, then when
accepted by both parties become an Agreement. We do add a UPCAST:Contract entity that
includes the agreement, plus other details necessary for a contract: Signature, Start and end
date, Natural Language part and link to a UPCAST:Data Processing Workflow.

We apply the same pattern to Request. Offers may include DPW patterns that are more general
than DPWs (this is a Soton research interest, it might be easier to assume they are DPWs) We
follow as much as possible the model that supports the IDSA Dataspaces Negotiation
Protocol comprised of a back and forth of Offers and Requests, than when accepted by both
parties become an Agreement. We do add a UPCAST:Contract entity that includes the
agreement, plus other details necessary for a contract: Signature, Start and end date, Natural
Language part and link to a UPCAST:Data Processing Workflow. We apply the same pattern
to Request. Offers may include DPW patterns that are more general than DPWs.

UPCAST D1.3: Updated Project Concept and Architecture

 63

Figure 54: Negotiation plugin Data Model.

Typical use: A typical use of the Negotiation and Contracting plugin is shown in the following,
with example interactions in JSON format:

1. Resource Consumer Finds a Resource: A resource consumer finds a resource interesting
and sends a request to initiate a negotiation with the resource producer.

Request

{

"id": "string",

"name": "string",

"type": "string",

"consumer": {

"id": "string",

"name": "string"

},

"producer": {

"id": "string",

"name": "string"

},

"data_processing_workflow_object": {},

"natural_language_document": "string",

"resource_description_object": {

"id": "string",

"name": "string",

"price": 0,

"environmental_effect": "string",

"resource_description": {},

"created_at": "2024-06-12T14:51:48.998Z",

"updated_at": "2024-06-12T14:51:48.998Z"

},

"odrl_policy": {},

"negotiation_id": "string",

"created_at": "2024-06-12T14:51:48.998Z",

UPCAST D1.3: Updated Project Concept and Architecture

 64

"updated_at": "2024-06-12T14:51:48.998Z"

}

Response

{

"id": "string",

"name": "string",

"consumer": {

"id": "string",

"name": "string"

},

"producer": {

"id": "string",

"name": "string"

},

"negotiation_status": "string",

"resource_description": {},

"dpw": {},

"nlp": "string",

"conflict_status": "string",

"negotiations": [

{}

],

"created_at": "2024-06-12T14:51:49.000Z",

"updated_at": "2024-06-12T14:51:49.000Z"

}

2. Exchanging Requests and Counteroffers: The resource consumer and producer exchange
requests and counteroffers, respectively, until they reach an agreement or decide to terminate
the negotiation.

Request

{

"id": "string",

"name": "string",

"type": "string",

"consumer": {

"id": "string",

"name": "string"

},

"producer": {

"id": "string",

"name": "string"

},

"data_processing_workflow_object": {},

"natural_language_document": "string",

"resource_description_object": {

"id": "string",

"name": "string",

"price": 0,

"environmental_effect": "string",

"resource_description": {},

"created_at": "2024-06-12T14:54:58.208Z",

"updated_at": "2024-06-12T14:54:58.208Z"

},

"odrl_policy": {},

UPCAST D1.3: Updated Project Concept and Architecture

 65

"negotiation_id": "string",

"created_at": "2024-06-12T14:54:58.208Z",

"updated_at": "2024-06-12T14:54:58.208Z"

}

Response

{

"status": "request-sent",

"id": "string",

}

Producer Responds with a Counteroffer

Request

{

"id": "string",

"name": "string",

"type": "string",

"consumer": {

"id": "string",

"name": "string"

},

"producer": {

"id": "string",

"name": "string"

},

"data_processing_workflow_object": {},

"natural_language_document": "string",

"resource_description_object": {

"id": "string",

"name": "string",

"price": 0,

"environmental_effect": "string",

"resource_description": {},

"created_at": "2024-06-12T15:11:10.250Z",

"updated_at": "2024-06-12T15:11:10.251Z"

},

"odrl_policy": {},

"negotiation_id": "string",

"created_at": "2024-06-12T15:11:10.251Z",

"updated_at": "2024-06-12T15:11:10.251Z"

}

Response

{

"status": "counter-offer-sent",

"id": "string",

}

3. Reach an Agreement: The producer sends an agreement message in two situations: (1)
receiving a request and agreeing with it; (2) sending a counteroffer and receiving an
acceptance from the consumer.

UPCAST D1.3: Updated Project Concept and Architecture

 66

4. Finalizing the Agreement: Once both parties reach an agreement, the negotiation is
finalized.

Request

{

"action": "finalize_agreement",

"data": { "negotiation_id": "string",

}

Response

{

"status": "agreement_finalized",

"agreement": {

"data_processing_workflow_object": {},

"natural_language_document": "string",

"resource_description_object": {

"id": "string",

"name": "string",

"price": 0,

"environmental_effect": "string",

"resource_description": {},

"created_at": "2024-06-12T15:11:10.250Z",

"updated_at": "2024-06-12T15:11:10.251Z"

},

"odrl_policy": {},

"negotiation_id": "string",

"created_at": "2024-06-12T15:11:10.251Z",

"updated_at": "2024-06-12T15:11:10.251Z"

}

}

5. Creating and Signing the Contract: Based on the agreement, a contract is created and
signed by both parties.

Request

{

"id": "string",

"name": "string",

"corresponding_parties": {},

"data_processing_workflow_object": {},

"natural_language_document": "string",

"resource_description_object": {

"id": "string",

"name": "string",

"price": 0,

"environmental_effect": "string",

"resource_description": {},

"created_at": "2024-06-12T15:27:56.685Z",

"updated_at": "2024-06-12T15:27:56.685Z"

},

"metadata": {},

"status": "string",

"negotiation_id": "string",

"created_at": "2024-06-12T15:27:56.685Z",

"updated_at": "2024-06-12T15:27:56.685Z"

UPCAST D1.3: Updated Project Concept and Architecture

 67

}

Response

{

"status": "Contract_Signed",

}

These JSON examples illustrate the typical interactions and data exchanges that occur during
the negotiation and contracting process within the plugin. This structured approach ensures
that both resource consumers and producers can effectively manage their negotiations and
contractual agreements.

Contract generation supported by LLM

The contract generation process within the UPCAST plugin is significantly enhanced by the
integration of Large Language Models (LLMs). These advanced AI models facilitate the
automatic generation of comprehensive and precise contracts based on the negotiation
outcomes. By analyzing the details of the negotiation, including usage policies, pricing
structures, and specific data processing requirements, the LLM can draft contracts that
accurately reflect the agreed terms. This automation not only speeds up the contract creation
process but also reduces the risk of human error and ensures that all legal and regulatory
aspects are meticulously addressed. The LLM's ability to understand and generate natural
language makes it an invaluable tool in creating clear and enforceable contracts, thereby
streamlining the entire negotiation and contracting workflow within the UPCAST platform.

Additional requirements

Table 1 lists additional requirements for the Negotiation and Contracting plugin in addition to
those presented in [1].

Table 1: Additional requirements for Negotiation.

Requirement
ID

Description Related Pilot
Requirements /
User Stories

Verification Priority Technical
Feasibility

REQ_NE_F_15 Users should be able
to state ranges of
values (e.g. price or
carbon consumption)
they are willing to
negotiate.

Synthetic/real
use-cases

Should
have

Feasible

REQ_NE_F_16 Users should be able
to state ranges of
classes in a hierarchy
they are willing to
accept (e.g., willing to
accept a request for
usage for medical
research instead of
general research).

 Synthetic/real
use-cases

Should
have

Feasible

5.12 Secure Data Exchange

Data exchange includes all tasks for the secure transfer of a dataset from the provider to the
consumer for executing the Data Processing Workflow. These functions are supported by the
Secure Data Delivery plugin that is shown in Figure 11.

UPCAST D1.3: Updated Project Concept and Architecture

 68

The Safe, Traceable, and Secure Exchange of Data functions of the plugin allow secure data
delivery within secure execution environments. The capabilities of the plugin should allow to
address two main use cases:

• One data provider transferring data to only one data consumer

• One data provider transferring data to multiple data consumers.

To meet the requirements for secure data exchange, the capabilities of the plugin will be the
following:

• Enforce safe and secure transfer and delivery of data and resources.

• Monitor performance, execution and compliance of data transfer using the plugin.

• Practical and scalable solution, handling large volumes of data.

• Minimize energy consumption of data transfer.

• Deployable in multiple data platforms and marketplaces, compliant with Gaia-X11

specifications.

The approach chosen by Dawex to provide these capabilities relies on principles for an open
architecture with trust as its focal point, able to interact both with other UPCAST plugins, and
with other existing data connectors:

• Allow data provider to perform data exchange with a trusted Safe data product Transfer

Plugin,

• Interconnect distributed data connectors to perform data exchange under the

supervision of a data space orchestrator.

• Enable organizations to design and manage data products from multiple data source

in their own environment,

• Facilitate deployment of the plugin with cloud agnostic and low consumption solution,

• Provide advanced tracing and telemetry metrics to analyse performance, execution

and compliance of Data Transfer.

5.12.1 Data exchange scenarios

This section gives an overview of different data exchange scenarios, namely, one-to-one and
one-to-many.

One to one data exchange

In this scenario, depicted in Figure 55, the Secure Data Delivery Plugin is working as a
request/response proxy to exchange data between a data provider and a data consumer.
Once terms are negotiated and a contract is established, the data consumer will be allowed
to request data product transfer securely to a trusted data destination or consume the data
product from within application execution directly.

11 https://gaia-x.eu/

https://docs.google.com/document/d/1s-7-KZdOQqvMY4pzPR1_7DKWnfoszTs05z-obkgmSWs/edit#heading=h.6304k8o9ua0c
https://gaia-x.eu/

UPCAST D1.3: Updated Project Concept and Architecture

 69

Figure 55: One to one data exchange scenario.

One to many data exchange

In this scenario, depicted in Figure 56, the Secure Data Delivery plugin functions as a
broadcast proxy to exchange data from a data provider to multiple data consumers. Based on
a data product delivered by the data provider, the plugin will automatically transfer this data
product to all active subscribers based on their access and usage rights that are specified in
the negotiated contract. The data consumer will negotiate a data contract before subscribing
to the data product delivery process.

Figure 56: One to many data exchange scenario.

5.12.2 Capabilities

The Secure Data Delivery plugin capabilities are shown in Table 2.

Table 2: Dawex Secure Data Delivery capabilities.

Monetization Data Product Exchange
Management

Mediation routing

• Data product listing

• Realtime data transfer

consumption

• Data product

versioning and

deprecation strategy

• Healthcheck

monitoring

• Data transfer routing

• Policy and restriction

enforcement

UPCAST D1.3: Updated Project Concept and Architecture

 70

Integration Observability Security

• Configure and manage

Data Source

• Support standard

transfer protocol

• Provide access to

technical

documentation

• Aggregate logs and

metrics

• Reliability, availability,

performance

• Alert triggering

• Traffic analysis to

detect suspicious

activity

• Restrict data product

access

• Enable authentication

standards

• Automatically refresh

authentication token

• Key access

management

5.12.3 Architecture

The Secure Data Delivery plugin architecture approach is driven by the capabilities presented
above and is focused to meet:

Performance and Consumption

• Microservices architecture to improve scalability and reliability,

• Minimal footprint of microservices consumption (memory, CPU),

• Enable access to advanced tracing and telemetry metrics without affecting data

transfer performance.

Interoperability

• Allow interconnection with UPCAST plugins by API or Kafka client,

• Allow synchronization with Data Marketplaces by API,

• Provide public documentation for technical integration.

Figure 57 shows the backend services architecture of the Secure Data Delivery plugin.
Backend services are based on multiple micro services: Manager API, Metrics API, Gateway
API. Each service is developed following domain driven architecture to isolate responsibilities
during Data Transfer.

Manager API: Manages Data Source and data product configuration. The Manager will match
standard security protocols to access Data Source and provide an authentication process for
data product accessibility. It should also provide an interface for data product listing.

Metrics API: This service is dedicated to observability functions. Metrics are collected with
the Metrics Collector and stored in a Time Series Database. The service exposes API and
Kafka client to allow metrics requesting such as: execution time, transfer status, latency
distinguished by contract, consumer, data product.

Gateway API: The Gateway isolates an API dedicated to Data Transfer routing, and requests
routing enforcement, which is essential for respecting Data Policies and protecting data
product access. Isolation focuses also on performance issues as Data Transfer latency
should not be impacted by tasks from another domain. This service is highly scalable to
handle large volumes of data.

UPCAST D1.3: Updated Project Concept and Architecture

 71

Figure 57: Safe data delivery Plugin Architecture.

Frontend: The plugin could expose a web interface to display management functions and
metrics visualization. Based on the plugin capabilities, each user can create its own frontend,
serving its needs. Developing a frontend interface for this plugin should be considered within
the scope of the monitoring plugin as an option.

The benefits of the plugin Architecture are

• Horizontal and vertical scalability with microservices,

• Storage oriented for telemetry analytics,

• Easy integration with tiers party applications (such as other UPCAST plugins),

• Exposed API for efficient and secure interconnection,

• Secure by design: single public entry point with the ingress,

• Decorelate frontend rendering for improved performance,

• Simple and reliable for fast learning, easy maintenance and low resource consumption,

• Virtualizable (docker) for cloud agnostic deployment.

5.12.4 Plugin interoperability

As detailed in the previous section, the Secure Data Delivery plugin will expose APIs to access
resources, allowing easy integration with other plugins, remotely or locally. Additional plugins
can also be integrated inside the Secure Data Delivery Plugin architecture.

To integrate with the monitoring plugin, the Secure Data Transfer plugin will send Kafka
messages and respect a strong naming convention as detailed in section 5.13.

5.13 Monitoring

This section presents the monitoring functions of the UPCAST platform. UPCAST monitoring
has two parts: (a) Execution (or runtime) monitoring that is used by the dataset provider to
monitor the execution of a dataset by the consumer following the agreed workflow and
contract between the two, and (b) monitoring of the plugins, which is used to maintain a log
of all actions taken during dataset preparation, annotation and negotiation. The following
subsections present the monitoring functions of UPCAST.

5.13.1 Execution Monitoring

The UPCAST platform includes functionalities for monitoring the execution of datasets for
maintaining a record of the execution for the dataset provider and also checking the

UPCAST D1.3: Updated Project Concept and Architecture

 72

compliance of the execution with the agreed workflow. The monitoring process is triggered
by the start of the dataset execution and lasts until its completion. During the process,
monitoring events are collected from the pilots’ execution environment, they are logged,
analyzed and presented to the dataset provider.

The streaming of monitoring events is implemented with standard streaming platforms. In
UPCAST Apache Kafka12 will be used for this purpose. Apache Kafka is a widely used,
distributed, highly scalable, elastic, fault-tolerant, and secure event streaming platform that
implements the publish-subscribe model for exchanging messages between publishers of
messages (dataset consumers in the case of UPCAST) and subscribers to messages (dataset
provider in the case of UPCAST).

Messages are communicated through abstractions that are called topics, which are
collections of messages. Each topic has a name that is unique across the entire Kafka cluster.
Messages are sent to and read from specific topics. Publishers of messages (UPCAST
dataset consumers) write monitoring events to a topic, whereas subscribers of messages
(UPCAST dataset providers) read those events from a topic. A given topic may have several
publishers and several subscribers. Whereas publishers can publish messages to at topic
concurrently, the way messages are consumer by parallel consumers depends on the
existence of consumer groups, which are collections of consumers. All consumers in a
consumer group share the messages of a topic, whereas consumers in different consumer
groups consume the same data. This model is very versatile and allows for a multitude of
patterns for the consumption and processing of the streamed messages,

Topics are organized into partitions, which can be processed in parallel by multiple consumers
in a consumer group. Kafka guarantees sequencing of messages only within a partition and
not across partitions. This guarantee has strong implications on the structure of topics in
partitions, and dents on the application requirements. In the case of UPCAST exactly because
sequencing of messages is a strong requirement as it is important for the subsequent
compliance process, each topic must be organized as a single partition.

Topics have names, which are unique for the Kafka cluster. Since in UPCAST several dataset
executions may take place, a strong naming convention for the names of topics must be
implemented. Therefore, topics will be named as

UPCAST-<contract-id>-<execution id>

where

1. contract-id is the unique contract identifier under which this execution takes place. The

contract with contract-id identifies the producer, the consumer, the dataset and the

workflow that will be executed on it.

2. execution id is the unique identifier of the execution for the particular dataset,

assuming that each dataset consumer assigns a unique id to each such execution for

a given contract.

The monitoring events are JSON objects and have the following structure

{

 source: [source component, type: string]

 timestamp: [timestamp of event at source, type: datetime]

 metric: [name of the metric monitored, type: string]

12 https://kafka.apache.org/

https://kafka.apache.org/

UPCAST D1.3: Updated Project Concept and Architecture

 73

 value: [value of the metric, type: string]

 result: [result of the metric, type: object]

 log: [log string, type: string]

}

The semantics of the JSON fields are as follows:

• source: the name of the source component that emits the JSON object. Each

component that implements the execution flow has a unique name. The name of the

source is used mainly for statistical purposes.

• timestamp: the timestamp of the creation of the JSON object.

• metric: the name of the metric that is reported, e.g. action-start (below).

• value: the value of the metric that is reported, e.g., the name of the action that is

started.

• result: any result the metric may have produced. Results are application specific

objects that are produced as a result of the completion of an action. Typically they are

integer values with 0 indicating normal completion of execution and non-zero

indicating completion that resulted in an error. The result of an action may be used for

making decisions for following different branches of the workflow or handling errors

that may have resulted from the execution of an action. The result filed has meaning

for action-end metrics, for the rest its value is None.

• log: log message that contains details of the monitored metric.

Topics are discovered by the monitoring plugin, by continuously polling the Kafka cluster.
When a new topic is detected the monitoring plugin creates a new Kafka consumer to read
messages from this topic.

Messages that are read by the Kafka consumers are sent to the compliance plugin to check
compliance of the execution and are also sent to the UPCAST provider dashboard for
monitoring the progress of the execution. When dataset processing ends, a message is sent
to the dashboard, to update the state of the execution for running to terminated, and the Kafka
consumer terminates. The Kafka topic persists after termination of the execution for providing
a record of it for further analysis.

Monitoring Metrics

This section presents the monitoring metrics that will be used in UPCAST. Monitoring metrics
are the entities that are emitted by an UPCAST consumer during dataset execution and are
streamed to the UPCAST provider. The monitoring metrics are classified in two categories,
management and execution.

The management monitoring metrics are the following:

Name of
metric

Meaning Value Emission instance

start Start of
processing

None Before start of dataset processing

stop End of
processing

None After completion of dataset
processing

suspend Suspension of
processing

None After dataset processing suspension

UPCAST D1.3: Updated Project Concept and Architecture

 74

resume Resumption of
processing

None Before dataset processing resumption

The action monitoring metrics are the following:

Name of
metric

Meaning Value Emission instance

action-start Start of
processing
action

Name of
action

Before start of dataset processing
action, e.g., join with another dataset,
calculation of statistics for an
attribute, etc.

action-stop Completion of
processing
action

Name of
action

After completion of dataset
processing action

5.13.2 Plugin Monitoring

This section presents the UPCAST functions for monitoring the execution of the plugins that
are used by the dataset provider before any execution of the dataset, i.e., during the
preparation and annotation of a dataset, its advertisement and the negotiation between the
dataset provider and the dataset consumer. The purpose of the plugin monitoring is to keep
a record of all actions that take place before dataset execution that are supported by the
UPCAST plugins.

UPCAST plugins are required to generate plugin monitoring event to a Kafka topic UPCAST-
plugin. The plugin monitoring events are JSON objects and have the following structure

{

 source: [source component, type: string]

 timestamp: [timestamp of event at source, type: datetime]

}

Each plugin emits different information for monitoring as shown below.

Negotiation: At each iteration it emits

 nid: string

 action: string

 result: object

nid is the negotiation id, action is the negotiation action and result is the result of the
negotiation action.

Pricing: at the return of its invocation it emits

 did: string

 range: tuple

 explanations: object

did is the unique dataset id, range is the suggested price range of the dataset and explanations
is a representation of the explanation for the suggested price range.

Environmental: at the return of its invocation it emits

 did: string

UPCAST D1.3: Updated Project Concept and Architecture

 75

 provider_id: string

 consumer_id: string

 exec_env_id: string

 env_profile: object

did is the unique dataset id, provider_id is the id pf the provider, consumer_id is the id of the
consumer, exec_env_id is the id of the consumer execution environment, and env_profile is
the resulting environmental profile.

Usage policies: at the return of its invocation it emits

 did: string

 policy_id: string

did is the unique dataset id and policy_id is the id of the usage and access policy.

Publishing: at the return of its invocation it emits

 did: string

 marketplace_id: string

 update: object

did is the unique dataset id and marketplace_id is the id of the marketplace. Update is an
object that represents any updates that have been made for this dataset, e.g., new suggested
price.

5.14 Compliance

The purpose of the compliance plugin is to check if execution of the workflow complies with
the terms of the contract that has been agreed between a provider and a consumer. The
Compliance plugin is configured to monitor a number of metrics that have been agreed
between a provider and a consumer as shown in Figure 11 along with constraints that may
have to be respected. During execution of the workflow, the monitoring plugin receives
execution monitoring events that reflect the progress of the execution and contain values of
metrics that must be verified for compliance. If any deviation from the agreed workflow
execution is detected the compliance plugin raises an alert to the dataset provider to signal
the violation.

5.15 Safe and Secure Execution

This section gives an overview of the execution environments that may be used in UPCAST
for the execution of a Data Processing Workflow. It first presents the execution environments
of the project pilots and then gives an overview of the SIMPIPE execution environment which
is an alternative execution environment that can be used in UPCAST.

First the details of the execution environments that may be used in UPCAST for executing
their DPWs are given. UPCAST pilots use their own infrastructure and execution environments
for processing datasets. The resulting diversity of execution infrastructures is seamlessly
integrated to the overall UPCAST architecture and is represented in the UPCAST Architecture
of Figure 11 as a single component. Moreover, the UPCAST Architecture remains open for the
choice of the execution environment that may be used for processing the DPW. SIMPIPE, an
alternative execution environment presented in section 5.15.6, may also be seamlessly
integrated in the UPCAST architecture. For all pilots, workflow modelling is done with the use
of the Data Processing Workflow Modelling plugin (cf. Section 5.8), which is based on ICT
abovo goodFlows modeler, while data exchange is performed with the Dawex marketplace
platform.

UPCAST D1.3: Updated Project Concept and Architecture

 76

5.15.1 Biomedical and Genomic Data Sharing

The execution environment of NHRF is designed for biomedical and Next-Generation
Sequencing (NGS) data analysis. It incorporates Nextflow, a bioinformatics-specialized
workflow engine for workflow orchestration and the AWS Batch service for compute resource
management. Nextflow coordinates various bioinformatics tools essential for processing
NGS data, ensuring reproducibility and scalability of workflows. AWS Batch manages the
dynamic provisioning of computational resources, including EC2 instances tailored for high-
throughput computing tasks. The system thus handles large input datasets and reference
files, typical in NGS analyses, by utilizing AWS S3 for storage and transfer, ensuring data
accessibility and durability. This architecture supports the efficient execution of complex
bioinformatics workflows, facilitating comprehensive analysis of extensive genomic datasets
while maintaining cost-effectiveness and scalability within the cloud infrastructure. In case of
less computationally intensive tasks, Nextflow can be easily redirected to utilize the local
infrastructure within NHRF premises or academic cloud infrastructure.

5.15.2 Public Administration

In the Public Administration Pilot, MDAT will be able to act both as resource provider and
resource consumer. As resource provider, MDAT will support mainly the sharing of public
administration datasets and presumably their analysis results with other public entities,
research institutions, local NGOs and citizens to drive and collaborate to the data driven
environmental policy making of the Municipality of Thessaloniki. As resource consumer,
MDAT aims to find additional datasets from public administration organizations and scientific
institutions to enrich and enhance the analysis possibilities of the respective data, performing
integration scenarios of relevant data and expanding the number of stakeholders within the
platform. The user journey utilising UPCAST plugins described in the previous section aligns
generally well with the workflows of the Public Administration Pilot. A key difference is that
there is no intention of using the Pricing Plugin, as the open data platform developed under
the Public Administration pilot will support the open and free publishing and sharing of data.

In the public administration pilot of MDAT, public organizations, corporations, and citizens can
provide their datasets under an open license. These datasets are offered for exchange
through an open-source data marketplace being developed for Thessaloniki’s regional
authorities. Given the open nature of the datasets, execution is not typically monitored, and
providers are not involved in the processing workflow. However, third parties might want to
offer Nextflow execution services to support scenarios involving calculations with open
datasets sourced from various providers.

A special case that might require an execution environment is the Hellenic Statistical
Authority. This public organization restricts access to available datasets due to the potential
inclusion of personal identification information. When a researcher requests a dataset
containing only anonymized information, the statistical authority must first anonymize and
then materialize the federated data into a dataset using the authority’s processing resources.

Additionally, a more general requirement for execution environment support is for the
marketplace itself to provide sample workflows for consumers. These workflows would
include the required datasets and processing pipeline scripts as a bundle, promoting
engagement with the platform.

5.15.3 Health and Fitness

The deployment and execution of the Nissatech pilot is based on the infrastructure used in
the commercial system Zona Zdravlja13. The data is collected from wearable devices used by

13 https://www.zonazdravlja.com

https://www.zonazdravlja.com/

UPCAST D1.3: Updated Project Concept and Architecture

 77

trainees and stored in a MongoDB14 database. Various types of reports can be generated,
providing added value for the fitness coaches who are monitoring the physical activity process
of a particular trainee. The collected data will be shared in the Data Marketplace and valuated
by the Data Valuation plugin, providing information about the preferences for data from
specific types of physical activities. Data will not be shared by individual trainees, but by the
Zona Zdravlja Platform provider. Individual trainees will be informed about the data valuation
process and encouraged to generate data with higher valuation.

Dawex will be used for sharing the data. Types and numbers of trainees depend on the
characteristics of the Dawex data sharing mechanism.

Quantity (how much can be published) depends on the characteristics of the Data
Marketplace.

5.15.4 Digital Marketing 1 (JOT)

The deployment and execution for the generation of the marketing data monetisation model
of JOT is based on Google Cloud infrastructure. Fully managed by Compute Engine, the pilot
is hosted in a Virtual Machine (e2-custom-2-6144 type with x86-64 architecture) with a public
IP and SQL Server Express installed to manage the user requests.

As presented in [1] flow orchestration implies the generation of the user request thanks to the
development of .NET Blazor Server web app and the publication by means of Microsoft
Internet Information Services (IIS).

For this purpose, the generation of the use requested data set is enabled by a ODBC
connection to BigQuery and embedded through a sequential storage procedure. First, the data
sample containing 100 initial rows, data model and its related information (metadata,
description and so on) is obtained.

Figure 58: Table containing the user request for data set generation.

Then, the following steps are sequentially orchestrated to create the final offer to the user.
These involve both the pricing and the final negotiation and agreement. Finally, when the
agreement is signed, the full data set will be generated and shared with the user with a link to
a Google Cloud Storage bucket (as indicated in Figure 59 – red arrow) and related reporting
services are executed.

14 https://www.mongodb.com/

https://www.mongodb.com/

UPCAST D1.3: Updated Project Concept and Architecture

 78

Figure 59: User interface showing the status of the user request.

5.15.5 Digital Marketing 2 (CACTUS)

The deployment and execution of the marketing data monetization model for CACTUS will be
managed as follows. Google Cloud APIs will be utilized to gather all necessary data, ensuring
a comprehensive and efficient data collection process. This data will then be imported into
the CACTUS custom-made CRM, designed to meet CACTUS specific needs and enhance data
management capabilities. The CACTUS CRM is hosted on a MySQL Server provided by Digital
Ocean15, leveraging its robust infrastructure for reliable performance and scalability. This
approach not only streamlines data collection and management but also integrates
seamlessly with existing systems, thereby optimizing the overall data monetization strategy.

5.15.6 SIMPIPE Execution Environment

SIMPIPE is an open source software16, developed and maintained by SINTEF. SIMPIPE
provides an accurate and secure sandbox environment for execution of pipelines using Argo
Workflows for orchestrating data pipeline jobs on a Kubernetes cluster. SIMPIPE runs a
preconfigured local Kubernetes cluster that runs the containerized steps of the workflow in
pods. Kubernetes is an opensource platform designed for managing automated deployment
and scaling of containerized applications, securing high resiliency by handling of complex
tasks such as automatic failover, horizontal and vertical scaling and continuous deployment.

The execution of a workflow pipeline in SIMPIPE consists of two stages. In the first stage a
project is defined by a project name and an Argo Workflow YAML file. The YAML file describes
the steps of the pipeline, which can conveniently also be a directed acyclic graph (DAG). This
enables complex workflows containing for example while loops and pipeline dependencies
such as the outcome of a previous step. In the second stage a dry run is defined by setting
input parameters for the steps of the pipeline. Submitting the dry run will schedule the
execution of the workflow. In the graphical user interface (GUI) of SIMPIPE the user can
monitor the status and progress of the pipeline along with output logs and resource metrics
of the entire pipeline and for individual steps.

15 https://www.digitalocean.com

16 https://github.com/DataCloud-project/SIM-PIPE

https://www.digitalocean.com/
https://github.com/DataCloud-project/SIM-PIPE

UPCAST D1.3: Updated Project Concept and Architecture

 79

Figure 60: Frontend interface elements of SIMPIPE.

Figure 60 shows screenshots of some graphical user interface elements from SIMPIPE. The
upper left panel shows pipeline step information. Lower left panels show logs and metrics
graphs respectively. Upper right panel show artefact browser for uploaded and produced
artefacts. Lower right panel show pipeline steps for a parallel loop

Clicking on the magnifying glass sign brings the user to a page with many different metrics
graphs. Logs are scrollable and can be downloaded. Logs and outputs can be found and
downloaded also from the artefact browser. In the artefact browser, the user can create new
buckets and upload files. The artefacts are stored in a local Minio instance, and can be
browsed and referenced as input files for new pipeline dry runs. Several dry runs of a pipeline
can be selected to make predictions for the scaling of the pipeline.

A containerized step in the workflow pipeline requires an image to be run. Local and public
images can be referenced as well as private image repositories. This is important in order to
use custom built images for the different steps of a pipeline.

SIMPIPE is a powerful tool for executing data pipelines in a safe and secure sandbox
environment, enabled by the integration of widely used opensource software for running and
managing data pipelines in cloud environments.

UPCAST D1.3: Updated Project Concept and Architecture

 80

6 UPCAST Pilot Descriptions

This section gives a detailed description and update on the UPCAST pilots.

6.1 Biomedical and Genomic Data Sharing

6.1.1 Requirements and technical challenges

Genomic and clinical data sharing raises challenges mainly due to the sensitive and
heterogeneous nature of such data. Protecting data privacy and ensuring appropriate
informed consent is obtained by clinical partners are critical ethical and legal considerations
that will be addressed by UPCAST plugins. In addition, complying with data protection
standards, implementing encryption, and enforcing secure data transfer and storage are
critical challenges concerning genomic and biomedical data processing. Finally, processed
genomic data are highly heterogeneous as a result of different analytical pipelines and
annotations applied. For this reason, integration of data from different resources is technically
challenging and requires representation of data with community-accepted standards to
enable interoperability with external systems or databases.

6.1.2 Data Processing workflows

NHRF acts both as resource provider and resource consumer. As resource provider NHRF
aims to share analysis results with other research groups and exploit them as the basis of a
new collaboration. As resource consumer, NHRF seeks to acquire data from research partners
and data repositories to perform integrative analysis on cancer genomics. The user journey
utilising UPCAST plugins described in the previous section, aligns well with the workflows of
NHRF. The difference that should be noted concerns the Pricing plugin, since NHRF currently
does not monetise any datasets. This could be possibly applied only to datasets derived from
in-vitro experiments and not to datasets orienting from patient data.

NHRF implements two bioinformatics workflows:

1. Cancer Genomics: Analysis of Next Generation Sequencing (NGS) data from cancer
tissue of patients together with the relevant clinical data for the derivation of a curated
list of variants including variants with clinical interest. This workflow necessitates
collaboration with clinical partners to acquire clinical and genomic data. Genomic data
are either provided by the clinical/research partner or generated by NGS performed at
NHRF Genomic Unit from the provided biomaterial (Figure 61).

2. In-vitro gene expression: Analysis of NGS data from in-vitro experiments performed in
NHRF for the derivation of a list of genes with differential expression. These
experiments concern the analysis of alterations in gene expression after treatment of
cancer cell lines with bioactive molecules that could represent candidate drugs (Figure
62).

UPCAST D1.3: Updated Project Concept and Architecture

 81

Figure 61: Cancer Genomics workflow

Figure 62: “In-vitro gene expression” workflow.

6.2 Digital Marketing Data and Resources

6.2.1 Business Case

The scope and goals of the business case are the same as defined in [1] and shown in Figure
63. Thanks to the access to the data and performance indicators of the digital marketing
campaigns launched and managed by JOT, the company is developing a new revenue stream
by offering dynamic and customizable analysis of the main user interest in different locations
and business verticals.

UPCAST D1.3: Updated Project Concept and Architecture

 82

Figure 63: Digital Marketing data specifications.

Figure 64: Business Case workflow model.

For the monetization of the marketing data, and due to the volume of data, it is required that
the service request and delivery are performed in a sequential approach. Main goal is to
ensure that all the requirements from the user are included in the final data monetization
service. Also, it avoids the generation of full data sets, incurring in processing time and cost
that do not meet the data consumer expectations. Every data set is generated by direct
connection to the BigQuery repository in Google Cloud,

Figure 64 shows the business case model using Data Processing Workflow Modelling
UPCAST plugin. As the business service is executed the requested plugins calls are carried

UPCAST D1.3: Updated Project Concept and Architecture

 83

out, mainly for data set pricing (which is very dependent on the features defined by the data
consumer in the initial request) and the negotiation one, which states the service delivery
conditions.

There are additional plugins that can be integrated in this workflow such as the monitoring
and resource allocation, but they have not been included in the picture to facilitate the
workflow comprehension and how the value is created in each step.

6.2.2 Datasets

The datasets used to implement this data monetization model are based on the performance
of the digital marketing campaigns managed at massive scale by JOT. The large volume of
campaigns covering almost every country and all the business verticals enables the
generation of value to a wide diversity of market segments.

In order to facilitate the definition of the data set request, the pilot has defined a user interface
with a limited number of degrees of freedom: country, business verticals (category), language,
date and short free text. There is also an optional feature in case the data consumer would
like to know the most frequent user persona looking for the information/interest requested.

With the aim of providing useful information the data will be aggregated at week or monthly
level.

Data sets are shared with the data consumers (clients) in *.csv or *txt format by means of a
sharing space or link for direct download.

6.2.3 Requirements and technical challenges

A detailed review of the requirements and technical challenges described in D1.1 (sections
4.4.2 and 4.4.5) has been carried out. Considering the current development status and the
difficulties addressed, Tables 12, 13 and 14 of that deliverable is still fully relevant

6.2.4 Processing workflows

Two workflows are defined, as follows (Figure 65):

1. Service Negotiation: It covers all the steps needed till the data monetization contract
signature. This workflow comprises the following steps:

a. Data set request definition
b. Generation of the query to the central data base
c. Calculation of the price based on the benchmark (according to data set core

features) and additional adjustments considering JOT internal variables.
d. Data set sample verification by the data consumer
e. Contract generation and signature

2. Service Delivery: In this case, the workflow covers the development of both the
generation of the requested final data set and the creation of the static and dynamic
reports containing the main insights embedded in the data.

UPCAST D1.3: Updated Project Concept and Architecture

 84

Figure 65: Digital Marketing workflows.

6.3 Digital Marketing Data and Resources

6.3.1 Business Case

With the evolution of digital marketing over the years, leveraging social media, mobile devices,
data analytics, and personalized targeting, Cactus utilizes client data, primarily from Google
and Meta Analytics, to identify the optimal digital marketing tools tailored to each client.
Additionally, financial data is considered to develop a comprehensive marketing strategy that
aligns with the client's overall business objectives.

6.3.2 Datasets

The data used are from the following channels: Google Analytics, Meta Analytics, Google Ads,

Sales Data, and the P&L statement. Specifically, the data collected from Google Analytics

include Visitors, ROAS, Click-through Rate (CTR), Click per Cost (CPC), Quality Score, Bounce

Rate, Channels, and Conversion Rate. From Meta Analytics, Cactus consider Budget, ROAS,

Landing Page View, Cost per Lead (CPL), Reach, Impressions, and Frequency. Cactus also

gathers data from Google Ads, including Quality Score, ROAS, Budget, Click-through Rate

(CTR), and Click per Cost. Cactus has the ability to incorporate Sales data and Profit and Loss

statements to determine the best digital marketing tools for their clients. By analyzing all

these data, Cactus can identify the weaknesses and strengths of their clients and determine

the tools that will help boost their sales.

6.3.3 Requirements and technical challenges

Cactus' goal is to automate its business procedures, and while pursuing this objective, there
are several important challenges that need to be addressed:

• Data Sharing: Establishing a seamless and secure process for clients to share their
data with Cactus is crucial. Implementing secure data transfer protocols and providing
user-friendly interfaces will facilitate efficient data exchange.

• Data Editing: Cactus needs to develop effective mechanisms to edit client data
accurately and efficiently. Implementing robust editing tools and workflows will
streamline the process and ensure data accuracy.

• User-Friendly Environment: Creating a user-friendly environment is essential for
clients. This includes mobile responsiveness, minimizing downtime, and adhering to

UPCAST D1.3: Updated Project Concept and Architecture

 85

stringent security protocols. Prioritizing intuitive interfaces and responsive designs
will enhance the overall user experience.

• Multilingual features: Given the geographical diversity of clients, it is important to
consider language requirements. Contracts should be available in the client's language
all the other data and information could be in English.

6.4 Sharing Public Administration for Climate

6.4.1 Business Case

The aim of this pilot is to support data driven environmental policy making within the
Metropolitan Area of Thessaloniki, by using the UPCAST plugins to streamline the process of
integration and exchange of environmental data between the various stakeholders. These
include public administration organizations, statistical authorities, research institutions, civil
initiatives as data providers and municipalities, authorized organizations, researchers,
citizens as data consumers.

Main goals are:

• Characterize the various uses of environmental data in Thessaloniki for decision-
making and monitoring policy progress.

• Define the local ecosystem of actors involved in managing environmental data.
• Test organizational and governance challenges in managing and presenting

environmental data to stakeholders.

6.4.2 Datasets

A number of diverse datasets from various data sources that could cover in an adequate
degree the urban and environmental landscape of the Municipality of Thessaloniki have been
identified through the Public Administration pilot. These datasets can be grouped into general
categories such as i) environmental, ii) demographics, iii) urban, iv) traffic and v) other and
come mainly from public statistical authorities as Eurostat and ELSTAT (Hellenic Statistical
Authority).

Some examples of these datasets (have been described in D1.1, section 4.2.4) are air pollution
measurements, traffic conditions, Urban Audit Indicators, transport statistics, dwellings
energy sources and availabilities, population, gender and occupation distributions.

The Pilot aims to be able to support all data relevant to these categories to enrich its available
resources, encourage data exchange and fill in some critical pieces of a data driven puzzle of
environmental policy making.

Moreover, a generic data model that consists of more specific data models that describe the
aforementioned data categories has been developed, in order to have a common
representation and understanding of related data resources and subsequently facilitate
search and integration processes. Resource providers of the platform will be able to adopt the
pilot data model to describe their resources and transform their data into RDF format,
leveraging the advantages of this representation.

Finally, resource consumers will be able to get data also in RDF format (where this
transformation has taken place), besides more common data formats (e.g., csv files).

6.4.3 Requirements and technical challenges

No significant updates regarding the requirements and technical challenges of the pilot have
been identified, as they have been described in Deliverable D1.1 (section 4.2).

6.4.4 Processing workflows

Two workflows have been identified, which are presented in this section.

UPCAST D1.3: Updated Project Concept and Architecture

 86

1. Share public administration data. Data Publishers publish datasets specified using
domain-specific vocabularies and ontologies that will be transferred securely to data
users. This workflow may include the following steps:

a. use the data definition plugin to create a structured definition for the dataset,
ensuring clarity for further processing by plugins for privacy and discovery.

b. upload datasets and their variations to meet the specifications and a potential
DPW request.

c. use the environmental cost estimation plugin to evaluate and optimize
datasets for ecological impact.

2. Integrate and aggregate public administration data. Data consumers integrate and
aggregate the data based on a defined data processing workflow. Using UPCAST
plugins, they can negotiate with data providers in an automated way and at the same
time respect data providers' privacy conditions and requirements. This workflow may
include the following steps:

a. Develop a DPW and publish it as a lead request for potential publishers.
b. Discover suitable datasets using the Resource Discovery plugin. The pilot

consumer evaluates these datasets and negotiates if suitable options are
found.

c. Use the negotiation plugin to start the negotiation and meet the pilot
consumer's needs and any legal constraints for each dataset.

d. Optional: Dataset producers can propose a service price for dataset
preparation.

e. Upon agreement, the pilot consumer purchases and gains access to the
customized dataset variation.

f. Use the UPCAST integration functionality to integrate the purchased datasets
and proceed to data analysis as defined in the DPW.

6.5 Health and Fitness Data Trading

6.5.1 Business Case

Millions of people are sharing data in various fitness apps with the help of devices like
wearables and IOT-enabled fitness equipment, creating very large datasets and streams.
Personal fitness/health data, collected during various physical activities is extremely valuable
for both the data producer (trainee), service providers (fitness, healthcare, wellbeing) and
product vendors (e.g., vendors of the fitness equipment, nutrition supplements). However,
wearables and fitness equipment are often used in “isolation”, meaning they are tailored to
scenarios that benefit a single trainee. In this pilot, the UPCAST plugins will be used to valuate,
share and trade data streams related to health and fitness data.

Smart4Fit17 (TRL9) is a system for real-time monitoring for fitness based on personal
wearables integrated in a bigger IoT environment (fitness club with plenty of connected
fitness device) and is used in collaborative scenarios, like group training and collaborative
gamification.

On the other hand, personal fitness/health data, collected during various physical activities
has a good value not only for the data producer (trainee), but also for many service providers
(fitness, healthcare, wellbeing) and product vendors (e.g., vendors of the fitness equipment,
different supplements).

The use case is resolving challenges for an efficient and secure monetarization of such data.
It explains the need for sharing the data and monetarize its value properly.

17 https://smart4fit.nissatech.com/

https://smart4fit.nissatech.com/

UPCAST D1.3: Updated Project Concept and Architecture

 87

6.5.2 Datasets

There are two main types of datasets:

Heart rate monitoring data: Heart rate data collected by monitoring users while training (fitness,
medical): HR: Heart rate data refers to the measurements or recordings of a person's heart
rate over a period. The heart rate is a measure of the number of times the heart beats per
minute (bpm) and is commonly used as an indicator of a person's cardiovascular health and
physical exertion. It is measured in beats per minute (BPM). Smart4Fit collects data at a
frequency of 0.5 Hz, which means a new heart rate measurement is recorded every 2 seconds.
Data is obtained from Bluetooth sensors during training sessions, allowing us to track and
monitor the trainees' heart rate throughout their workout. Data is further analyzed in other
smart analytical services to gain insights into the trainees' physiological response, intensity
of the exercise, recovery patterns and overall cardiovascular fitness.

Acceleration monitoring data: Monitoring Acceleration data from accelerometer for trainee’s
better performance: Acceleration data from an accelerometer refers to the measurements or
recordings of the acceleration experienced by an object or body in three-dimensional space.
Unlike a gyroscope that measures rotational movement, an accelerometer specifically detects
linear acceleration, including both static and dynamic acceleration. The accelerometer
provides acceleration data in three axes: x, y, and z. Each axis represents a different direction
or dimension of linear movement. The data collected from these axes allows tracking of
changes in velocity or speed of the object in those directions. The sensor can be configured
to collect data at various frequencies: 5, 52, 208 and 416 Hz. Higher frequencies provide more
detailed data and capture rapid changes in acceleration, while lower frequencies may be
suitable for capturing slower movements or conserving battery life. By collecting acceleration
data from the accelerometer, one can analyze a trainee's movement patterns, assess the
intensity of physical activities, detect impacts or sudden changes in velocity, and monitor body
dynamics during training sessions. This data can be used to evaluate exercise techniques,
quantify physical exertion, identify areas for improvement, and enhance the overall training
outcome for the trainees.

6.5.3 Requirements and technical challenges

A detailed review of the requirements and technical challenges described in D1.1 (sections
4.3.2 and 4.3.5) has been carried out. Considering the current development status and the
difficulties addressed, Tables 8, 9 and 10 of that deliverable is still fully relevant.

UPCAST D1.3: Updated Project Concept and Architecture

 88

7 UPCAST Integration with Marketplaces

This chapter describes the mechanisms that will be used for the deployment of the plugins to
the project’s market places and integration with them.

7.1 Nokia Marketplace

7.1.1 Technical description

Each of the microservices in the NDM platform provides a RESTful API by which it can be used
in any platform or customer application. An overview of the NDM Rest API is shown in Figure
66.

Figure 66: NDM REST API.

To use any service within NDM, the user should authenticate himself using
username/password and Auth service API. It will get an access token which should be pass
in all the API in the header:

Create access token:

curl --location 'https://ukpn.dataexchange.nokia.com//auth/tokens' \

--header 'Content-Type: application/json' \

--data-raw '{

 "email": "buyer@ukpn.com",

 "password": "Buyer@ukpn123"

}'

7.1.2 Support for UPCAST Architecture

NDM (Nokia Data Marketplace)18 is based on microservice architecture and is deployed on
k8s cluster. So any plugin should come with helm chart19 so it could be deployed within that
cluster.

Although the deployment would be easy but communicating of the plugin to the other services
within the cluster should be checked for each plugin separately as the functionalities could be
overlapped with the existing and core functionalities of the NDM.

Moreover, for the other services to be able to work and communicate to the plugin, there may

18 https://www.nokia.com/networks/bss-oss/data-marketplace/

19 https://helm.sh/docs/topics/charts/

https://ukpn.dataexchange.nokia.com/auth/tokens
mailto:buyer@ukpn.com
https://www.nokia.com/networks/bss-oss/data-marketplace/
https://helm.sh/docs/topics/charts/

UPCAST D1.3: Updated Project Concept and Architecture

 89

be a requirement for code development and code modification.

7.2 Dawex Data Exchange

7.2.1 Technical description and API Specs

In the context of the project, Dawex will provide a dedicated Data Exchange environment for
pilots to provide and acquire data, using the UPCAST plugins when relevant, according to the
scenarios validated in the Deliverable 5.1 [5].

Dawex's objective is to reference the plugins in the Data Exchange environment catalog so
that they can be used on the platform by participants, after the contracting process.

There will be three main scenarios for plugin integration:

1. A scenario where the plugin is provided under a downloadable app (apk) packaged in

a data product offering in the Data Marketplace,

2. A scenario where the plugin is exposed via a service offering in the Data

Marketplace, to be called up and consumed via an API

3. A scenario where the plugin provider offers a data processing service in the Data

Marketplace, that is next acquired by the users (pilots) to be used outside the

platform.

7.2.2 Support for UPCAST Architecture

In the context of the project, Dawex will provide a dedicated Data Exchange environment for
pilots to provide and acquire data, using the UPCAST plugins when relevant, according to the
scenarios validated in Deliverable 5.1 [5].

Dawex's objective is to reference the plugins in the Data Exchange Platform catalog so that
they can be used on the platform by participants, after the contracting process.

We have validated three main scenarios for plugin integration:

• A scenario where the plugin is provided under a downloadable app (apk) packaged in
a data product offering in the Data Marketplace,

• A scenario where the plugin is exposed via a service offering in the Data Marketplace,
to be called up and consumed via an API

• A scenario where the plugin provider offers a data processing service in, the Data
Marketplace, that is next acquired by the users (pilots) to be used outside the platform.

To do so, the plugins must comply with the following standards/best practices

• W3C Verifiable Credential Data Model standard

• W3C DCAT v3 standard (Data Catalog Vocabulary)
• REST API oriented architecture conforming to the Open API standard (3.0 spec) to

provide programming language-agnostic interface description

• OpenID Connect (OIDC) standard as an authentication layer on top the OAuth 2.0
framework to allows identity verification through any OIDC authorization server (Azure,
GCP, AWS, …) in a REST-like manner and using JSON as a data format

• Pull APIs for asynchronous processing

UPCAST D1.3: Updated Project Concept and Architecture

 90

8 Conclusions

D1.3 reports the final version of the UPCAST Architecture, which has been formed after
analysis of pilot requirements, partners’ technologies, integration, and deployment
requirements to the project’s marketplaces. The UPCAST architecture presented in this
deliverable is a refinement of a the one that has been defined in the early stage of the project.
The UPCAST architecture is versatile and extendible as it allows plugins to be integrated
according to the needs of dataset providers and consumers. The UPCAST architecture that is
given in the document will be the basis for the developments in the project, their integration
in the project’s marketplaces and the set up for the execution of the project pilots.

In addition to the high-level UPCAST architecture, the document gives an update of the plugins
that are designed and developed in the project, along with their interface specifications, and
typical uses of them. Moreover, the dashboards of the data provider and the data consumer
that are used for specifying, publishing, discovering and processing datasets are presented.

Along with the UPCAST architecture, the deliverable gives also the updated workflow of using
the UPCAST plugins from the dataset annotation to its execution and monitoring.

Finally, the document gives an update of the workflows and business case of the five project
pilots.

UPCAST D1.3: Updated Project Concept and Architecture

 91

9 References

[1] UPCAST, “D1.1: Project concept requirements setup,” 2023.

[2] UPCAST, “D1.2: MVP definition and architecture,” 2023.

[3] A. Azcoitia, C. Iordanou and N. Laoutaris, “Measuring the Price of Data in Commercial

Data Marketplaces,” in ACM Data Economy Workshop, 2022.

[4] A. Azcoitia, C. Iordanou and N. Loutaris, “Understanding the Price of Data in Commercial

Data Marketplaces,” in IDCE, 2023.

[5] A. Alhazmi, T. Blount and G. Konstantinidis, “Forbackbench: A benchmark for chasing vs.

query-rewriting.,” in VLDB Endowment 15, Sydney, 2022.

[6] R. Fagin, P. G. Kolaitis and L. Ropa, “Data exchange: getting to the core.,” ACM

Transactions on Database Systems (TODS), vol. 30, no. 1, pp. 174-210, 2005.

[7] M. Benedikt, G. Konstantinidis, G. Mecca, B. Motik, P. Papotti, D. Santoro and E.

Tsamoura, “Benchmarking the chase.,” in 36th ACM SIGMOD-SIGACT-SIGAI

Symposium on Principles of Database Systems, Chicago, IL, USA, 2017.

[8] A. Artale, D. Calvanese, R. Kontchakov and M. Zakharyaschev, “The DL-Lite family and

relations.,” Journal of artificial intelligence research, vol. 36, pp. 1-69., 2009.

[9] D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati and G. Veter, “DL-Lite: Practical

reasoning for rich DLs.,” in International Workshop on Description Logics, 2004.

[10] S.-. Das, “R2RML: RDB to RDF mapping language,” 2011. [Online]. Available: http://www.

w3. org/TR/r2rml/.

UPCAST D1.3: Updated Project Concept and Architecture

 92

[11] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens and R. Van de Walle,

“RML: A generic language for integrated RDF mappings of heterogeneous data,”

in LDOW, 2014.

[12] A. Dimou, “R2RML and RML comparison for RDF generation, their rules validation and

inconsistency resolution.,” arXiv:2005.06293, 2020.

[13] T. Bagosi, D. Calvanese, J. Hardi, S. Komla-Ebri, D. Lanti, M. Rezk, M. Rodríguez-Muro, M.

Slusnys and G. Xiao, “Bagosi, Timea & Calvanese, Diego & Hardi, Josef & Komla-

Ebri, Sarah & Lanti, Davide & Rezk, Martín & Rodríguez-Muro, Mariano & Slusnys,

Mindaugas & Xiao, Guohui. The Ontop Framework for Ontology Based Data

Access.,” Communications in Computer and Information Science, pp. 67-77, 2014.

[14] UPCAST, “D5.1: Monitoring and Evaluation Methodology,” 2024.

[15] UPCAST, “D1.3: Updated project concept and architecture,” 2024.

[16] A. Artale, D. Calvanese, R. Kontchakov and M. Zakharyaschev, “The DL-Lite family and

relations.,” Journal of Artificial Intelligence Research (JAIR), vol. 36, no. 1-69, 2009.

UPCAST D1.3: Updated Project Concept and Architecture

 93

ACRONYMS

Acronym Explanation

AI Artificial Intelligence

CPU Central Processing Unit

DPV Data Privacy Vocabulary

DPW Data Processing Workflow

DSL Domain-Specific Language

EIO Environmental Impact Optimiser

GDPR General Data Protection Regulation

HPC High Performance Computing

IDSA International Data Spaces Association

LLM Large Language Model

MVP Minimum Viable Product

NLP Natural Language Processing

ODRL Open Digital Rights Language

PDP Policy Decision Point

PMP Policy Management Point

PUC Privacy and Usage Control

RC Resource Consumer

RP Resource Provider

UI User Interface

WMO Workflow Model Ontology

