

2024

Draft Document

DELIVERABLE 2.2

THIS DOCUMENT IS IN DRAFT FORM AND PENDING OFFICIAL
APPROVAL. IT IS SUBJECT TO REVIEW AND MAY BE UPDATED.

1

D2.4: Privacy and Usage

Control Modules

2

Title: Document version:

D2.4 Privacy and Usage Control Modules I 0.1

Project number: Project Acronym Project Tittle

101093216 UPCAST Project UPCAST Project

Contractual Delivery Date: Actual Delivery Date: Deliverable Type*-Security*:

M15 (March 2024) M15 (March 2024) OTHER - PU

Responsible: Organization: Contributing WP:

Luis-Daniel Ibáñez University of Southampton WP2

Authors (organization):

Luis-Daniel Ibáñez (Soton)

Jaime Salas (Soton)

Tek Raj Chhetri (Soton)

Semih Yumusak (Soton)

George Konstantinidis (Soton)

Mariza Koukovini (Abovo)

Eugenia Papagiannakopoulou (Abovo)

George Lioudakis (Abovo)

Majid Ektesabi (Nokia)

Abstract:

The UPCAST project is a pioneering endeavour that enhances data sharing across diverse sectors

providing Universal Plugins to data marketplaces that provide or improve fundamental building blocks

of data sharing platforms. This deliverable describes the first version of the Privacy and Usage

This project has received funding from the European Union’s Horizon Research

and Innovation Actions under Grant Agreement № 101093216.

3

Constraint and the Federated Machine Learning plugins

Keywords:

Privacy, Usage Constraints, Data Operations, Data Processing Workflows,

REVISION HISTORY

Revision: Date: Description: Author (Organization)

V0.1 15.10.2024 Initial version Majid Ektesabi(Nokia)

This project has received funding from the European Union’s Horizon Research and

Innovation Actions under Grant Agreement Nº 101093216.

More information available at https://upcastproject.eu/

 COPYRIGHT STATEMENT

The work and information provided in this document reflects the opinion of the authors and the UPCAST

Project consortium and does not necessarily reflect the views of the European Commission. The European

Commission is not responsible for any use that may be made of the information it contains. This document

and its content are property of the UPCAST Project Consortium. All rights related to this document are

determined by the applicable laws. Access to this document does not grant any right or license on the

https://upcastproject.eu/

4

document or its contents. This document or its contents are not to be used or treated in any manner

inconsistent with the rights or interests of the UPCAST Project Consortium and are not to be disclosed

externally without prior written consent from the UPCAST Project Partners. Each UPCAST Project Partner

may use this document in conformity with the UPCAST Project Consortium Grant Agreement provisions.

5

INDEX

1 PURPOSE AND SCOPE .. 7

2 PRIVACY AND USAGE CONSTRAINT PLUGIN .. 8

2.1 Steps to run the demonstrator .. 10
2.1.1 Data Producer defines privacy and usage constraint rules ... 10
2.1.2 Soliciting Consent and Use Specific Constraints ... 12
2.1.3 Data Consumer internal policies and Data Processing Workflows: .. 18

3 FEDERATED MACHINE LEARNING PLUGIN .. 41

3.1 Plugin Structure .. 43
3.1.1 Server .. 43
3.1.2 Client ... 43
3.2 Requirements, setup and run instructions .. 43
3.3 FML process ... 44

4 CONCLUSIONS AND NEXT STEPS .. 47

ANNEX I ACRONYMS & ABBREVIATIONS ... 48

Acronyms .. 48
Abbreviations .. 48

ANNEX II OPEN API SPECIFICATION .. 49

 LIST OF FIGURES

Figure 1: UPCAST MVP overview. Plugins in the scope of this deliverable: Privacy, Data
Processing Workflow and Federated Machine Learning Plugins highlighted in red. 7

Figure 2: Use case diagram of Privacy and Usage Control plugin as per D1.2 10

Figure 3 Interface for usage constraint rule Creation. Data Producers may declare constraints
for “Actions” on “Target” data for a given “Purpose”. The lower panel shows the rule in
Machine-Readable format. ... 12

Figure 4: PrivUI user registration .. 12

Figure 5: PrivUI Ontology Upload interface ... 13

Figure 6: PrivUI View Ontology page. The NISSA in the figure is the provided name of the
uploaded domain ontology, representing Nissatech use case. Similarly, is the case for the
data schema ontology .. 14

Figure 7: Ontology selection for consent form configuration.. 15

Figure 8: Details of consent form configuration ... 15

Figure 9: Additional use case specific constraints configuration .. 16

Figure 10: Submitting consent request to data provider (individual) 16

6

Figure 11: Data producer configuration of data information ... 17

Figure 12: Consent request received by data producer and response status 18

Figure 13: Consent along with the use case specific constraints details and the opt-in opt-out
option to grant (or prohibit) the permission (or consent).. 18

Figure 14: GoodFlows homepage .. 19

Figure 15: Information Model Editor showing DataTypes’ graph ... 21

Figure 16: Operations graph ... 22

Figure 17: Roles graph ... 22

Figure 18: Purposes graph ... 22

Figure 19: Policy administration Home view ... 23

Figure 20: Rule Creation form – General rule information and definition of action for which the
rule applies .. 25

Figure 21: Rule Creation form - defining preActions and constraints upon action entities 26

Figure 22: Example of prohibition regarding publishing an UserID.. 27

Figure 23: Meta-rules generated from the permissions rule in Figures 19 and 20 28

Figure 24: Meta-rule details (a) .. 29

Figure 25: Meta-rule details (b) .. 30

Figure 26: Meta-rule details (c) .. 31

Figure 27: Policy Decision Point API – Conflict identification and possible resolution 32

Figure 28: Evaluate standalone intention .. 33

Figure 29: Found rules for given intention ... 33

Figure 30: Inferred prohibition applying for the given intention .. 34

Figure 31: Machine-readable representation of a conflict .. 35

Figure 32: Data Processing Workflow Management ... 37

Figure 33: DPW creation environment – Task PerformStatisticalAnalysis with its execution
profile ... 38

Figure 34: DPW creation environment - Edge specification .. 39

Figure 35: Federated Machine Learning plugin high level design. Nokia Data Marketplace
(NDM) used as example Data Marketplace .. 42

Figure 36: Information Model API ... 50

Figure 37: Policy Model API ... 50

Figure 38: Workflow Model API .. 51

Figure 39: PrivUI API ... 51

7

1 Purpose and scope

This deliverable presents the first version of the Privacy and Usage Constraints, and

Federated Machine Learning plugins, linked to tasks T2.1 and T2.2 in Work Package 2.

We also present relevant advances on the Data Processing Workflow plugin (DPW),

such as specification and evaluation of usage constraints against DPW purposes.

 It serves as a public record of the progress achieved in these tasks, showcasing the

plugin development through practical demonstrations.

Deliverable D1.2 in Work Package 1 defined the Upcast MVP and its core

functionalities. Figure 1 below highlights the plugins in the scope of this deliverable.

Figure 1: UPCAST MVP overview. Plugins in the scope of this deliverable: Privacy, Data Processing Workflow
and Federated Machine Learning Plugins highlighted in red.

Section 2 focuses on the Privacy and Usage Constraint Plugin. The presentation of the

plugin is divided in three sub-components: Definition of privacy and usage constraints

by a Data Producer (Section 2.1.1); Soliciting consent and user specific constraints

(Section 2.1.2); and Data Consumer internal policies and Data Processing Workflows

(Section 2.1.3). The latter includes the advances on Data Processing Workflows

specification and assessment.

Section 3 focuses on the Federated Machine Learning Plugin. Section 4 details

conclusions and next steps.

8

2 Privacy and Usage Constraint Plugin

This plugin supports both Data Producers and Data Consumers in specifying fine-

grained usage constraints.

Based on the specifications delivered in D1.1 and D1.2, we further refined two general

usage scenarios of Privacy and Usage Constraint featuring a Data Producer and a Data

Consumer:

Scenario 1:

1. A Data Producer defines privacy and usage constraint rules on a dataset they

wish to publish or advertise on a Data Marketplace. In this scenario we assume

the dataset does not include any personally identifiable information, hence, the

Data Producer is the sole owner.

2. A Data Consumer specifies a Data Processing Workflow where one stage may

make use of a Dataset like the one specified in step 1. The Data Consumer goes

to a Data Marketplace and discovers1 the Dataset specified in step 1. The

privacy and usage constraints defined by the Data Producer in step 1 are

checked against the steps in the DPW and any conflicts are detected and

informed. If there are no conflicts, the Consumer may choose to acquire the

dataset. If there are conflicts, the Consumer may either discard the Dataset or

request a negotiation with the Data Producer through the Negotiation plugin.

The Negotiation plugin will be detailed in Deliverable 3.1 as part of WP3.

3. For cases where a Data Consumer requires personal data from individuals that

do not publish in a Marketplace, this plugin provides a solution for the Data

Consumer to generate a form to request informed consent and record

responses from the individuals. Consumers are also able to specify use case

specific constraints additional to the consent essential to the intended data

processing, that Subjects can grant or revoke. For example, “permission to re-

sell data to third parties” is not essential to data processing, but desirable to

ask individuals.

1 In this deliverable, we abstract from details of how discovery happens. Refer to D2.1 for details
on the UPCAST Discovery plugin.

9

Scenario 2:

1. This scenario starts from step 3 of scenario 1: a Data Consumer requiring

personal data from individuals that do not have it advertised in a Marketplaces,

generate forms to request informed consent, and record responses. Consumers

are also able to specify use case specific constraints additional to the consent

essential to the proceeding, that Subjects can grant or revoke (e.g. “permission

to further re-sell data to third parties”)

2. A Data Consumer may assume the role of a Data Producer and

publish/advertise on a Data Marketplace a dataset comprised of an appropriate

subset of the data collected in step 1, e.g., those from individuals that

consented to further re-sell data to third parties. Additionally, they may want to

define additional usage constraint rules such as commercial usage restrictions

or geographical place of processing.

3. As per Step 2 of scenario 1, with the addition that conflict resolution is also

executed against individual use case specific constraints, e.g., if an individual

allowed re-sale of their data but only for “Research” purposes, and the

Processing Workflow’s purpose is for “Marketing”, a conflict is flagged.

We demonstrate Scenario 2. Steps 1 and 2 are demonstrated on recording “Consent

Forms and Data Usage Constraints”, Step 3 is demonstrated on recording “Data

Consumer perspective”. In this deliverable, we also illustrate the general scenarios with

a running example stemming from the Health and Fitness use case described in section

4.3 of D1.1. In this use case consortium partner NISSA acts as a Data Consumer that

collects personal data from individuals (trainees) that engage in fitness activities using

smart wearables. Data collected includes heart rate and acceleration vectors with the

purpose of gaining insights into the trainees' physiological response, intensity of the

exercise, recovery patterns and overall cardiovascular fitness. This data can be used to

provide personalised reports to the trainees (e.g. statistical analysis or estimation of

number of calories burnt) or engage in social activities around training such as

challenges and leaderboards. NISSA may also create aggregated analysis from trainees

data and NISSA may also create aggregations of trainees data further augmented with

data from sensors installed in exercise machines and create a dataset they could

advertise on a marketplace, becoming a Data Producer.

Figure 2 shows the use cases of this plugin specified in D1.2.

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fyoutu.be%2FqaNaDgnDQY8&data=05%7C02%7Cl.d.ibanez%40soton.ac.uk%7Cd9f94debbf0648c0a20008dc4f22e400%7C4a5378f929f44d3ebe89669d03ada9d8%7C0%7C0%7C638472258471052563%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=h6DtVxIQMWGJ%2BvdYm7FXXQ%2FUP8ksDM5o05QammrhNqs%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fyoutu.be%2FqaNaDgnDQY8&data=05%7C02%7Cl.d.ibanez%40soton.ac.uk%7Cd9f94debbf0648c0a20008dc4f22e400%7C4a5378f929f44d3ebe89669d03ada9d8%7C0%7C0%7C638472258471052563%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=h6DtVxIQMWGJ%2BvdYm7FXXQ%2FUP8ksDM5o05QammrhNqs%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fyoutu.be%2FWCD3nt1oOiw&data=05%7C02%7Cl.d.ibanez%40soton.ac.uk%7Cd9f94debbf0648c0a20008dc4f22e400%7C4a5378f929f44d3ebe89669d03ada9d8%7C0%7C0%7C638472258471058598%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=AWVIEs2yHg1Z9Qz2dN%2FV6kVRyC6%2BGDCL%2BZt7wgGE4J4%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fyoutu.be%2FWCD3nt1oOiw&data=05%7C02%7Cl.d.ibanez%40soton.ac.uk%7Cd9f94debbf0648c0a20008dc4f22e400%7C4a5378f929f44d3ebe89669d03ada9d8%7C0%7C0%7C638472258471058598%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=AWVIEs2yHg1Z9Qz2dN%2FV6kVRyC6%2BGDCL%2BZt7wgGE4J4%3D&reserved=0

10

Figure 2: Use case diagram of Privacy and Usage Control plugin as per D1.2

At the time of this deliverable, we have achieved full implementation of use cases

“Define Rules for Resource Consumer”, “Manage Rules” and “Provide Policy Decision

Point Functionality”, and partial implementation of “Identify Conflicts” and “Transform

Resource Provider Constraints”, that will be completed for D2.4.

2.1 Steps to run the demonstrator

2.1.1 Data Producer defines privacy and usage constraint rules

In this section of the demonstration we explain how a Data Producer defines privacy

and usage constraint rules on their dataset. The main interface is depicted in Figure 3,

it’s a form that contains several dropdown menus and a text input where we define the

terms that comprise a rule:

• The type of rule, whether it be a permission, a prohibition or an obligation.

• The actor or entity who this rule applies to. These entities come from DPV and

denote entities that have been defined in GDPR.

• The target of this rule, which is an asset that is the subject of this rule.

• The action or data operation that is applied to the target of this rule.

• The purpose of this rule, which is a general purpose of a data processing task

as defined in DPV.

11

In addition, we have identified a specific use-case, where the user constructs a

prohibition on the action “Execute”. Selecting these two values will make a text area

pop-up under the action dropdown menu, where the user can specify a query in some

standard query language (such as SQL). This states that the actor cannot execute the

specified query over the target of the rule, while following the other terms of the rule

normally.

Furthermore, the form contains a field where any number of additional constraints can

be added (by clicking on the “Add Row” button) or removed (by clicking on the

“Remove” button next to each constraint) to make more expressive rules. Each

constraint is comprised by three values: a left operand that denotes the semantics of

this constraint (e.g., datetime means this constraint is about a specific date and time),

an operator that compares values or checks for inclusions, and a right operand that

denotes a specific value. If a rule contains multiple constraints, each constraint must

be fulfilled for the rule to be valid.

Once all values have been selected, pressing the “Add Rule” button will output an ODRL

policy describing the constructed rule in a text area. Additionally, this will reset the form

to allow the user to define more rules in the same manner. Pressing the “Add Rule”

button when the text area already contains rules will append the current rule to the saved

policy and output an ODRL policy describing the new rule as well as the previous ones.

Finally, pressing the “Clear” button will clear the text area of any rules, allowing the user

to start over.

In the Health and Fitness example, partner NISSA is interested in limiting the potential

use of the dataset they created mashing up smart wearables and smart exercise

machine data for the purpose of research and development of exercise machines.

12

Figure 3 Interface for usage constraint rule Creation. Data Producers may declare constraints for “Actions” on
“Target” data for a given “Purpose”. The lower panel shows the rule in Machine-Readable format.

2.1.2 Soliciting Consent and Use Specific Constraints

UPCAST’s PrivUI (see Figure 1) is designed to be used by both the data consumer and

data producer. The data consumer can also be referred to as the data

controller/processor and data producer as data subject in GDPR terminology. Section

2.3.1 describes the functionalities provided by the PrivUI for the data consumer and

Section 2.3.2.2 for the data provider.

Data consumer view

The consumer can configure the consent form along with the additional use case

specific constraints to request the consent from the data producer. In order to

configure the consent form, the following steps must be followed.

1. The first step is to register as a user of type ‘data consumer’ in the PrivUI (Figure 4).

By default, the user is registered as data producer, which needs to be validated and

changed to the type ‘data consumer’ by the admin user.

Figure 4: PrivUI user registration

2. Next login to the portal, i.e., PrivUI and navigate to Configure→Upload Ontology

menu option, where you can upload three different types of ontology, namely, (i)

General Ontology; (ii) Domain Ontology; and (iii) Data Schema Ontology. By default,

DPV and ODRL ontologies are used as general ontology and therefore unless you

want you have your own general ontology there’s no need to upload it. However, the

13

other two ontologies, Domain and Data Schema ontologies needs to be uploaded.

In our running example with the Health and Fitness usecase, the Domain ontology

describes terms and taxonomies related to health and fitness, for example the

specific purpose of “Development of Exercise Machines”, while the Data Schema

corresponds to the collected data: heart rate and acceleration vectors. Figure 5

shows the Upload ontology page of PrivUI. Additionally, you can also view the

uploaded ontology as shown in Figure 6 by navigating to the menu,

Configure→View Ontology.

Figure 5: PrivUI Ontology Upload interface

14

Figure 6: PrivUI View Ontology page. The NISSA in the figure is the provided name of the uploaded domain
ontology, representing Nissatech use case. Similarly, is the case for the data schema ontology

3. After successfully uploading all the required ontologies, navigate to the menu

Configure→Configure Data Request to configure the consent request. This

page consists of a form with step-by-step instructions that need to be filled out

with the information, such as the purpose for which data is being collected, the

duration, and the data being collected, all of which are required for collecting

and processing personally identifiable (PII) data as per GDPR. Additionally, the

page also allows to specify use case specific constraints. Figures 7, 8 and 9

shows the steps involved in the configuration of the consent request.

4. Once successfully configured, the form can be sent to the data providers by

selecting the list of the users (or data providers) in order to collect the data

provider consent response as shown in Figure 10. The page can also be

navigated via menu Configure→Send Consent Request. In our Health and

Fitness use case running example, trainees receive the form and can

grant/revoke consent about the use of their heart rate and acceleration vector

data for the purposes stated by the Data Consumer NISSA.

5. The user, i.e., data provider response to the consent request can be viewed in

ODRL format by navigating to the menu Configure → View ODRL Response.

15

Figure 7: Ontology selection for consent form configuration

Figure 8: Details of consent form configuration

16

Figure 9: Additional use case specific constraints configuration

Figure 10: Submitting consent request to data provider (individual)

Data producer view

UPCAST’s PrivUI provides the data producer or data subject the functionalities to

configure the data that they are interested in sharing and provide permission (or

prohibition) to the requested consent. Figure 11 shows the data information that the

17

user is interested in sharing with the data consumer for all sensors being collected in

the Health and Fitness use case. This data information will be matched against the

data information from the consent request form prior to sending the request to the

selected user (or data provider). Similarly, Figure 12 shows the list of the consent

requests received by the users and their status, i.e., whether the consent was given or

revoked. In a similar manner, Figure 13 provides a view of the selected consent request

along with use case-specific custom constraints and an option to provide consent (or

permission) through an opt-in or opt-out method via a checkbox.

Figure 11: Data producer configuration of data information

18

Figure 12: Consent request received by data producer and response status

Figure 13: Consent along with the use case specific constraints details and the opt-in opt-out option to grant
(or prohibit) the permission (or consent)

2.1.3 Data Consumer internal policies and Data Processing Workflows:

The following three capabilities are demonstrated:

19

1) Specification of an organisation’s internal policies that regulate its operations

against a variety of provisions; in the general case, these may originate from

applicable legislation (e.g., the GDPR) or other operational and data governance

considerations. Notably, the same technology can be used to accommodate, by

extension, policies governing entities in established collaborations, as defined,

e.g., on behalf of a marketplace.

2) Data Processing Workflow (DPW) specification, as the primary means through

which the data consumer states their intentions for the data they seek to acquire.

These intentions are derived from jointly considering a variety of aspects,

including: the processing operations intended to be performed; the entities in

direct or indirect control of their execution; the attributes of the acquired data and

the conditions under which any processing and exchange is meant to take place;

the stated purposes that the DPW in question is intended to serve.

3) Conflict identification and resolution. This is currently demonstrated at the level

of the organisation, in the context of addressing discrepancies between any user-

defined DPW and the organisation’s internal policies. At a second phase, this

functionality will be further exploited in the context of the Negotiation plugin,

towards resolving the conflicts that may arise between a data consumer-defined

DPW and the constraints specified by data provider(s) using the functionalities

described in sections 2.3.1 and 2.3.2.

Management of Resource Consumer-side policies and DPWs is demonstrated via the

goodFlows tool which offers the required functionalities by means of dedicated user

interfaces, i.e., Policy Administration and Process Modeller, respectively.

Figure 14: GoodFlows homepage

20

Both policies (internal organisational – domain specific policies, policies stemming from

the legislation, or imposed by an associated marketplace) and DPWs are defined on the

basis of the organisation’s Information Model. To this end, the goodFlows Information

Model Editor view is leveraged, i.e., a user-friendly software application devised for the

specification and management of the underlying semantic model. It provides all

necessary functionality for the management of all different information classes and their

relations, and the corresponding ontology. The use of the editor hides the technical

details of the model, requiring no particular technical expertise by its users; it translates

the input provided through the graphical interface to machine code. As illustrated in

Figure 15, there are three main areas the user sees upon logging in, notably the Graph

(upper side of the screen), List (left side of the screen) and Properties (bottom side of

the screen) areas. The Graph area allows graphically editing the different information

classes, including the definition of entities and the hierarchies thereof. As shown in the

upper part of this area, it is organised in tabs, each used for the illustration of a different

graph of the Information Model. The List area provides a list of the entities, sorted

alphabetically, in order to facilitate navigation. The Properties area is devised for the

management of entities’ properties, notably attributes and relations, both inside the

same graph (i.e., hierarchy) and relations spanning across different graphs (e.g., the

association of an operation with sought purposes), as well as providing information

about applicable rules for the selected entity. The user interface is complemented by

some control functions, as well as a map for making easier the navigation in large

graphs.

Setting up the organisational Information Model

For this demo, a domain-specific information model has been devised modelling data

types, purposes, operations, etc., met in the operation of the Health and Fitness use case

by partner NISSA. In that respect, it is established upon the Data Privacy Vocabulary

(DPV), while NISSA specific concepts fall under high-level concepts by means of isA

relations. As an example, Figure 15 illustrates (part of) the DataTypes’ graph of a model.

As shown, there are multiple entities in the graph, interconnected with two types of

relations; blue lines denote isA relation, whereas red lines reflect the isPartOf relation.

Since the entity selected by the user is the TrainingMeasurements, the Properties

area lists the ones characterising this entity. To this end, there are shown various

contains relations (with Calories, peakZones, RestingAbility, UserID, Height,

Weight etc.), as well as isA relations, with InferredPersonalData and with

AnyDataType being the most general data type. Likewise, NISSA domain-specific

entities have been added in (i) the Operations’ graph (Figure 16), e.g., the operations

PerformStatisticalAnalysis (isA Analyse), CalculateCaloriesBurnt

(isPartOf PerformStatisticalAnalysis), PublishResults (isA

MakeAvailable) and ProvideConsent (isA anyOperation); (ii) the Roles’ graph

(Figure 17), e.g., DataAnalyst (isA NaturalPerson), Trainer (isA User) and

Trainee (isA User); (iii) the Purposes’ graph (Figure 18), e.g.,

21

Estimate_fitness_level (isA PersonalisedBenefits) and Leaderboard

(isA RequestedServiceProvision).

Figure 15: Information Model Editor showing DataTypes’ graph

The formed hierarchies allow for defining rules upon high-level entities which will be

propagated across the hierarchies, alleviating the need to explicitly define exhaustive

rulesets. In that respect, both positive and negative authorisations will be propagated to

more specific entities, while negative authorisations will also be propagated across

isPartOf relations; for instance, a permission defined for the role DataSubject will

be inherited towards Trainee, while a prohibition defined for data type UserID will be

propagated to the container TrainingMeasurements entity, thus implying partial

access to the said entity.

22

Figure 16: Operations graph

Figure 17: Roles graph

Figure 18: Purposes graph

Policy Administration

The Policy Administration editor is integrated with the one for Information Model

administration, as rules are defined upon its entities. The editor provides functionality

for creating, editing, deleting and listing rules, as well as extracting meta-rules from

23

explicitly defined ones for high-level entities and rules’ searching by means of advanced

search criteria, while it guides the user through the definition of a rule’s elements in a

user-friendly manner. Said functionalities are made available to the UI through the

appropriate REST API depicted in Annex 2. The use of the UI hides the technical details

of the underlying semantic policy model, requiring no particular technical expertise by its

users.

1. View and manage access and usage control rules

Figure 19 depicts the home page of the Policy Model Editor. Specified rules are listed in

a table and can be viewed, edited and deleted using the respective row buttons. The

“Create Rule” button allows for the creation of new rules, while the button “Extract-

metarules” initiates the procedure that generates the meta-rules being the result of

propagating explicitly defined rules across the information model’s hierarchies; this

button has been added for testing purposes, as the related functionality will be finally

offered by a respective event-driven job executed every time the policy model has been

finalised after being updated.

Figure 19: Policy administration Home view

It is noted that the system is Deny-biased, i.e. something is permitted if at least one

associated permission has been defined.

24

2. Create access and usage control rules

In goodFlows, an access and usage control rule is modelled through the following

structure:

𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛
𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛

} (𝑝𝑢, 𝑎𝑐𝑡, 𝑝𝑟𝑒𝐴𝑐𝑡, 𝑐𝑜𝑛𝑡, 𝑝𝑜𝑠𝑡𝐴𝑐𝑡)

where act is the action that the rule applies to; pu is the purpose for which act is

permitted/prohibited/obliged to be executed; cont is a structure of contextual

parameters; preAct is a structure of actions that should have preceded; postAct refers to

the action(s) that must be executed following the rule enforcement.

Actions constitute conceptual triples of {actor, operation, resource} and are formed

leveraging the entities of the Information Model. In more detail, action’s entities are

defined as a tuple <concept, constraint>, where concept is an Information Model entity,

and constraint is an expression (or a logical relation thereof) assigning values to

attributes and/or sub-concepts of the given entity. This mechanism allows the

definition of access and usage control rules inline with the Attribute-based Access

Control (ABAC) paradigm.

Authoring of such expressive but complex rules is a very challenging task, implying the

need for a trade-off between expressiveness and user friendliness; the Rule Creation

form illustrated in Figure 20 has been designed with a view to providing an intuitive way

of specifying fine-grained access and usage control rules. The form is divided in the

following five areas:

• The area for defining the rule’s general information, i.e., the rule type (Permission,

Prohibition or Obligation), a brief description of the rule and the purpose for which

this rule applies.

• The access and usage action definition area, for defining the elements of the

action for which the rule applies.

• The pre-actions definition area, for defining one or more (logically related)

required actions that must or must not have preceded the enforcement of the

rule.

• The post-actions definition area, for defining one or more (logically related)

required actions that must or must not follow the enforcement of the rule.

• The contextual constraints definition area for defining one or more (logically

related) contextual conditions under which the rule applies.

25

Figure 20: Rule Creation form – General rule information and definition of action for which the rule applies

Information coming from the Information Model Editor, like e.g., purposes, data types,

operations, roles and attributes, become available either through pop-up dialogs (by

pressing the “Select From Graph” button) or by typing in the respective textboxes with

suggestions made by the system through autocompletion.

Various variables are defined for rule’s elements by the system, in order to be used in the

context of other entities’ definition; specifically, based on the label of the referenced

entity, the following variables are available:

• Access and usage action specific: {Action}, {Action}.Resource,

{Action}.Operation, {Action}.Actor

• Pre-action specific: {Preaction<id>}, {Preaction<id>}.Resource,

{Preaction<id>}.Operation, {Preaction<id>}.Actor,

• Post-action specific: {Postaction<id>}, {Postaction<id>}.Resource,

{Postaction<id>}.Operation, {Postaction<id>}.Actor

• Purpose

• Context

For instance, Figure 21 illustrates an example of defining the preAction of the permission

denoting “For the purpose of requested service provision, data analysts may publish

inferred personal data, if the user (data subject) has provided consent for the given

purpose and the given operation.” Logically related constraints are defined for the

26

resource ExplicitlyExpressedConsent, leveraging the variables Purpose and

Action.Operation, while the User is associated with the owner of the main action’s

resource (i.e., InferredPersonalData).

Figure 21: Rule Creation form - defining preActions and constraints upon action entities

Regarding the definition of constraints, autocompletion facilitates the definition of

complex expressions regarding the constraint subject and value, drawing inspiration

from SQL; for instance, adding a period character after the “Action.Resource” of Figure

22 will fetch the attributes of the InferredPersonalData dataType.

Finally, if more than one pre-/post- actions are specified, they must be logically related

to each other before saving the rule; logical relations of required actions are defined with

the same component used for the definition of logical sentences of constraints.

Once they have created or modified a rule, the user may choose to save it through the

corresponding button at the bottom left of the main screen, named after “Save Rule” or

“Update Rule” respectively. Rules are saved in the underlying RDF Triplestore.

Further, the prohibition of publishing UserID for the purpose of

RequestedServiceProvision is defined. This rule will act as an exception to the

previously defined permission, as it will be propagated across the isPartOf relation

between UserID and TrainingMeasurements.

27

Figure 22: Example of prohibition regarding publishing an UserID

3. Extract meta-rules

Motivated by the need for improved performance during real-time operation, such as the

conflict identification and resolution in the context of validating a DPW against the

access and usage control rules, offline reasoning, i.e., proactive extraction of knowledge

contained in the access and usage control rules, is leveraged. Through the meta-rules

extraction procedure, most of the required knowledge will be already available by the

request time, thus offering performance gains. Once the ruleset is finalised, meta-rules

are extracted by pressing the “Extract meta-rules” button through propagation of the

explicitly defined rules across the Information Model’s graphs.

28

Figure 23: Meta-rules generated from the permissions rule in Figures 19 and 20

For instance, Figure 24 illustrates some of the meta-rules generated from the rule

defined in Figure 22 and Figure 23, while Figure 25 and Figure 26 present the details of

such a meta-rule applying for the purpose Leaderboard, the resource

TrainingMeasurements and the operation PublishResults. Specifically, Figure 15

and Figure 16 present the analysis of the explicitly defined preAction to two OR-related

preActions, depending on whether the User is a Trainer or a Trainee.

29

Figure 24: Meta-rule details (a)

30

Figure 25: Meta-rule details (b)

31

Figure 26: Meta-rule details (c)

Policy decision

Reasoning over the access and usage control rules will feed the procedure of DPW

verification and re-engineering, towards compliant by design DPWs and efficient

negotiation between Data Consumers and Data Providers. For this purpose and fostering

explainability, the Policy Decision Point API (Figure 27) offers functionality for evaluating

a “standalone intention”, i.e., an attempted action for a purpose and under some context

against the underlying ruleset in order to identify conflicts and to propose alternatives.

32

Figure 27: Policy Decision Point API – Conflict identification and possible resolution

In the context of this demo, the standalone intention of Figure 28 will be evaluated

against the rules defined in the previous Policy Administration steps for NISSA, namely

whether a data analyst may publish training measurements for the purpose of projection

to the leaderboard. It is noted that this functionality is not yet offered via the UI.

33

Figure 28: Evaluate standalone intention

After the meta-rules extraction procedure, the two rules found after search of Figure 19

may apply for the given intention, with their details illustrated in Figure 14, Figure 15,

Figure 16 and Figure 20. However, the found prohibition prevails over the permission and

subsequently the system will examine if partial access to/usage of the requested

resource is allowed.

Figure 29: Found rules for given intention

34

Figure 30: Inferred prohibition applying for the given intention

The response depicted in Figure 31 depicts the information made available by the

conflict identification and resolution functionality. Specifically, the conflict structure

contains the original intention, reference to the rules that lead to the result, and the

updated intention, which apart from possibly changed properties of the given intention

also contains also:

• the combinedResources property, grouping together alternative resources to be

accessed/used that are contained in originally requested resource

• positive/negative pre- and post- actions that should/not be performed.

In the case of our example, permissions to publish all but the UserID data types

contained in the TrainingMeasurements data type are found, so the conflict

resolution will suggest projection of the requested training measurements in order for

userID to not be included in the published results, along with the execution of the

required preActions of Figure 15 and Figure 16.

35

Figure 31: Machine-readable representation of a conflict

In this version of the Policy Decision Point, these standalone intentions are evaluated

against the Data Consumer’s ruleset, while the intentions themselves are modelled

leveraging constructs used in goodFlows operation, thus serving the validation of a

Resource Consumer DPW step against the internal organisational policies. The next

version of the API will include integration with the Resource Specification plugin;

specifically, the privacy and usage constraints specified by the Resource Provider in

ODRL will be translated and imported to a dedicated consumer-side policy model

ontology, so as (i) intentions to be evaluated against both rulesets with the appropriate

conflict resolution among rules and rule combination mechanisms in place, and (ii)

updated intentions to be expressed in ODRL. To this end, the related ODRL adaptor is

currently under construction.

36

Data processing workflow specification

For defining UPCAST data processing workflows (DPWs), the starting point has been the

Planning Environment offered by goodFlows; to this, adaptations and extensions are in

the process of being introduced in order to accommodate, on the one hand, the more

prevalent data orientation of UPCAST workflows, and, on the other, their necessary

integration to other UPCAST plugins.

Of all the features to be offered by the planning environment, this deliverable focuses on

its workflow modelling functionalities; these are made available through an appropriate

REST API, devised for interacting with the Planning environment in a loosely-coupled

fashion, and providing all appropriate functions for the creation and management of

DPW models. The latter are expressed in goodFlows as ontologies; in that respect, the

API covers all necessary functionality for the specification of processing tasks and

flows, including actors, operations, assets, flow of information and all other aspects of

a workflow, as well as its corresponding ontological representation. The current OpenAPI

specification is shown at a high level in Annex 2.

The Planning environment is integrated, at a minimum, with the Information Model

administration editor, as all processing tasks and flows are defined upon its entities. For

the purposes of the current demonstrator, the goodFlows web-based user interface

comprising both of these environments has been parameterised to the above REST API

and to the selected use case (inspired by the UPCAST health and fitness pilot/

Nissatech). The use of the UI hides the technical details of the workflow model, requiring

no particular technical expertise by its users; it translates the input provided through the

graphical interface to machine code and the respective ontologies. Although additional

features are expected to be added, an initial set of steps through which the end user will

interact with the API through the envisioned front end are already established and

summarised in the following:

1. View and manage data processing workflows

The introductory screen to the DPW plugin (Figure 32) calls, upon load, a method which

returns all currently available DPW models, i.e., models that have been created and not

in the meantime deleted, within the considered organisation or organisational unit. The

table listing the DPW models offers some basic filtering functionality against DPW

identifier, title, description text and verification status (to be expanded in D3.1 and D3.2),

while, for each of the DPW models presented therein, the end-user is allowed to open it

(view-only or edit mode, depending on authorisation level), or delete it. Finally, the user

may choose to create a new DPW from scratch by clicking on “Create Process” button.

37

Figure 32: Data Processing Workflow Management

2. Create a data processing workflow

By choosing to create a new DPW, the user lands on the main screen of the DPW plugin

(Figure 33). The design area at the centre allows to graphically model a DPW by defining

its tasks and flows. To the left, the environment presents the list of available processing

operations defined for the particular organisation within its Information Model as part of

the configuration of the tool, sorted alphabetically for facilitating navigation. To the right

of the design area, the user is able to define a number of properties for the DPW model,

including its association with purpose(s) intended to be served by it and the

identification of the roles that may act as the initiators of the DPW. Finally, the UI is

complemented by a map for making the navigation in the model easier.

38

Figure 33: DPW creation environment – Task PerformStatisticalAnalysis with its execution profile

The user defines purposes and initiators by selecting and de-selecting items from the

respective lists, with the help of “plus” and “minus” buttons. As regards the population

of the lists, their items are also here retrieved from the corresponding classes of the

Information Model. In the example above the selected purpose is Leaderboard,

whereas the selected initiator is DataProcessor, referring in a generic way to NISSA in

DPV terms.

New tasks are created by dragging and dropping operations from the list on the left. For

connecting tasks, i.e., defining the control and data flows among them, the user simply

wires the boxes representing the tasks in the design area. This leads to the creation of

edges, still neutral at this stage as regards their type (i.e., control or data flows). By

clicking on an edge, however, the user has the option, through the dedicated area that

dynamically appears below, to further define the kind of data the edge shall carry, as well

as the flow type, or possible conditions that may apply; edge types, in particular, can also

be updated directly by right-clicking on the edge. As an example, Figure 34 shows how

the user may set the information entity carried by the edge connecting two tasks; here,

this is defined to be of data type TrainingMeasurements, which is the output of the

operation PerformStatisticalAnalysis performed by the edge source task. If

required, additional constraints on the properties of selected information entities may

be added through expressions and potential logical groups thereof. Further, by clicking

39

on the “Add Entity” button, additional information entities may be associated with the

same edge, depending on modelling requirements.

Figure 34: DPW creation environment - Edge specification

Tasks in goodFlows can be seen as the cumulative effect of certain actors performing

operations on well-defined assets. In order to allow for more flexibility in the definition

of workflows, the tool has introduced the concept of Execution Profiles for defining

distinct <actor, operation, asset> combinations as needed, which may therefore be used

to denote alternative modes of executing the same task. By clicking on a task and then

the “+” button below the design area, users may define one or more execution profiles

bound to it, grouping together execution parameters, as well as actors and assets

described in terms of their types and potential additional constraints. In the example of

Figure 33 above, the execution profile added for task PerformStatisticalAnalysis

defines as actor any individual holding the role DataAnalyst, while the asset upon

which the task will be performed is of type SensorData. More than one actors and

assets can be jointly defined in the same execution profile, subject to modelling

requirements; for instance, instead of SensorData, the user might set the asset to

specifically consist of AccelerometerData and ElectrocardiographyData, in

order to denote that both subtypes of SensorData, but only them, should be used for

the particular task according to the particular profile. Finally, conditions may also need

to be added on occasion in order to further restrict the execution of a task as per the

execution profile in question. The execution profile(s) of a task, together with the

40

purpose(s) and initiator(s) defined for the DPW as a whole, can be seen as the overall

intention of the DPW designer with respect to implied processing.

In defining tasks and edges in detail, information coming from the Information Model

Editor, like e.g., data types, roles and attributes, become available either through pop-up

dialogs (by pressing the “Select From Graph” button) or by typing in the respective

textboxes with suggestions made by the system through autocompletion.

Finally, both tasks and edges can be deleted by right-clicking on them and explicitly

proceeding with the deletion; in the case of deleted tasks, all associated edges are also

removed from the DPW model.

3. Save a data processing workflow

Once they have created or modified a DPW model, the user may choose to save the result

through the corresponding button at the bottom right of the main screen, named after

“Save” or “Update” respectively. In any case, the DPW is saved in the underlying RDF

Triplestore, while the graph representation of the DPW generated by the UI is also stored

as an mxgraph zip file for future use.

4. Open a data processing workflow

Upon opening an existing DPW model, its graph representation is handed over to the UI

in the form of an mxgraph zip file. Tasks, edges and all other DPW elements are retrieved

and displayed to the user through the same screen as shown in Figure 24 and Figure 25.

In case a DPW has been opened for editing, the exact same functionalities described in

the creation step above are offered; if a DPW is viewed without editing rights, all clickable

and modification functionality is disabled/not rendered.

5. Export a data processing workflow

The user is enabled to export the DPW model as an OWL ontology and retrieve it as an

OWL file. In its enriched version this can also contain the full Information Model and the

basic concepts of Workflow Models.

41

3 Federated Machine Learning Plugin

Federated Machine Learning (FML) is a machine learning technique that enables

training models on distributed datasets without the need to centralize the data. In FML,

the model is trained across multiple decentralized edge devices or servers holding

local data samples, without exchanging them. This approach addresses critical issues

around data privacy, security, access rights, and heterogeneous data.

There are multiple benefits of FML:

• Data Privacy: Raw data never leaves the local devices, protecting user privacy.

• Regulatory Compliance: Helps in complying with data protection regulations

like GDPR.

• Reduced Data Transfer: Only model updates are shared, reducing bandwidth

usage.

• Access to Diverse Data: Enables learning from a wide range of data sources

without centralization.

• Continuous Learning: Models can be updated frequently with fresh, real-world

data.

• Scalability: Can handle large numbers of participants and huge amounts of

decentralized data.

• Reduced Central Storage Need: No need for a large central data repository.

• Collaboration: Allows multiple organizations to collaborate without sharing

sensitive data.

A usage scenario in the context of UPCAST is as follows, a Data Consumer needs to

train a Machine Learning model. She discovers in a Data Marketplace multiple Data

Providers that own data that could be useful to train the model. However, the usage

constraints of the Data Providers prohibit the transfer of data outside of their premises.

Providers are still interested in doing business with Data Consumer and are willing to

use their own computational resources to collaborate with the Consumer without

having to transfer data.

We regard FML as a special kind of Data Operation, we assume the FML plugin is

available in the resource catalog of the Data Marketplace used (or IDSA DataApp

Store). Its metadata can be then used as a step in a Data Processing Workflow,

connecting the FML plugin with the rest of the UPCAST infrastructure. The continuation

of the usage scenario above is as follows:

1. The Data Consumer creates a Data Processing Workflow including a FML step. For

ease of exposition, we assume FML is the only step.

2. The Data Consumer negotiates with each provider the usage conditions of each

42

dataset, assisted by the DPW plugin to check there are no conflicts between the

agreements of multiple providers.

3. Once all negotiations have been successfully completed, the FML plugin provides

the Data Consumer and Data Providers with the setup need to train a Machine

Learning model in a Federated way.

Figure 35 describes the general setup of the FML plugin. The central server coordinates

the learning process and aggregates model updates. Clients (edge devices or local

servers) train the model on their local data. Only model updates are shared, not the raw

data.

Figure 35: Federated Machine Learning plugin high level design. Nokia Data Marketplace (NDM) used as
example Data Marketplace

An important condition that needs to be agreed during negotiation is that Data

Providers must make available computing infrastructure to participate in the Federated

training of a ML model. They must be able to install the FML plugin agent on their

server and their server should be able to run a machine learning process on the local

data.

43

3.1 Plugin Structure
The project consists of two main components: the server and the client.

3.1.1 Server
Server app which should be run on the main server side or inside a marketplace is

acting as an orchestrator and aggregator in a FML project. The API of the Server

component is available on the UPCAST github repository2

The main tasks of “server” are:

• Flask application serving as the central aggregator.

• Manages FML sessions and model aggregation.

• Provides API endpoints for setup, model upload, and training initiation.

• Uses SQLite database to store session configurations.

• Implements the Strategy for model aggregation.

3.1.2 Client
The client app, which acts as an agent on the client side, manages the local ML

process and communicates the model parameters to the server side.

The main tasks of the client side:

• Simulates edge devices or local data holders

• Implements local model training

• Communicates with the server to receive and send model updates

3.2 Requirements, setup and run instructions
As it has been mentioned before, in the FML scenarion there will be a constant

communication between the clients(data providers) and the server. For this purpose

clients should provide an server(or VM) with open port and public IP so the server

would be able to send the model parameters and start the FML process

To run an FML session, the following steps must be followed.

Setup Environment:

• Install required dependencies (Flask, Flower, PyTorch, etc.)

• Ensure Python 3.7+ is installed

Upload Initial Model:

• Use the /uploadmodel endpoint to upload an initial PyTorch model

2 https://github.com/EU-UPCAST/OpenAPISpecification/tree/main/fml_plugin

https://github.com/EU-UPCAST/OpenAPISpecification/tree/main/fml_plugin

44

Create FML Session:

• Use the /savesetup endpoint to create a new FML session

• Specify parameters like strategy, number of rounds, and minimum clients

Initiate Training:

• Use the /start endpoint to begin the federated learning process

• Provide the initial model path, number of clients, and rounds

Start Clients:

• Run multiple instances of client.py on different machines or processes

• Ensure clients are configured with the correct server address

Monitor Progress:

• Observe server logs for round completions and model updates

• Use WebSocket connections to receive real-time updates

Retrieve Final Model:

• After all rounds are complete, the final aggregated model is saved as

"final_global_model.pth"

Analyze Results:

• Evaluate the final model's performance

• Compare with initial model to assess improvement

3.3 FML process

When the Training is Initiated, these steps are automated:

1. Server Initialization:

 The central server prepares for the federated learning process. It loads the initial

model and sets up the SaveModelStrategy with the specified parameters (number of

rounds, number of clients, etc.).

2. Client Selection:

 The server selects a subset of available clients to participate in the current round of

training. In your implementation, all available clients are selected for each round.

45

3. Model Distribution:

 The server sends the current global model parameters to all selected clients. This is

done without transferring the entire model structure, just the weights and biases.

4. Local Training:

 Each client receives the global model parameters and updates them with their local

data:

 - The client loads the received parameters into their local model.

 - It trains the model on its local dataset for a specified number of epochs.

 - During this process, the model learns patterns specific to the client's local data.

5. Model Update Calculation:

 After local training, each client calculates the difference between the new model

parameters and the original ones received from the server. This difference represents

the "model update" or "gradient" for that client.

6. Sending Updates to Server:

 Clients send only these calculated updates back to the server, not their raw data or

the entire model. This step is crucial for maintaining data privacy.

7. Update Aggregation:

 The server receives updates from all participating clients and aggregates them. In

your implementation, this is done using the FedAvg (Federated Averaging) algorithm,

which essentially takes a weighted average of all client updates.

8. Global Model Update:

 The server applies the aggregated update to the global model, creating a new version

that incorporates learning from all participating clients.

9. Model Evaluation:

46

 Optionally, the server may evaluate the updated global model on a test dataset to

track its performance.

10. Progress Tracking:

 The server logs the training progress, including metrics like the update norm, which

indicates how much the model has changed in this round.

11. WebSocket Update:

 Real-time updates about the training progress are sent to connected clients (e.g., a

web interface) via WebSocket, allowing for live monitoring of the process.

12. Round Completion:

 The current round is marked as complete. If there are more rounds to go, the process

repeats from step 2.

13. Final Model Saving:

 After all rounds are complete, the final global model is saved to disk.

Throughout this process, several key aspects of federated learning are maintained:

- Privacy: Raw data never leaves the clients; only model updates are shared.

- Efficiency: The server aggregates learning from multiple sources without needing

access to the raw data.

- Collaboration: Multiple clients contribute to improving a shared model.

- Adaptability: The global model learns from diverse data sources, potentially improving

its generalization.

This cycle of local computation and global aggregation allows for the creation of a

powerful, collaboratively trained model while preserving the privacy and security of

each participant's data.

47

4 Conclusions and Next Steps

This document describes the version 1 of UPCAST plugins Privacy and Usage Control,

and Federated Machine Learning.

Producer side of Privacy Plugin:

We will work on the definition of complementary actions, that is, providing further fine-

grained control to Producers with regards to data, including the option to define rules

that are applicable to a subset of a dataset. We will also Incorporate a policy engine on

the Producer side to enable decisions of access and usage of data.

Consumer side of Privacy Plugin:

It currently offers specification of consumer polices, reasoning over them for policy

decision including conflict resolution, as well as specification of consumer DPWs. In this

version of the policy decision mechanism, standalone intentions are evaluated against

the Data Consumer’s ruleset, thus serving the validation of a Resource Consumer DPW

step against the internal organisational policies. The next version of the API will include

integration with the Resource Specification plugin; specifically, the privacy and usage

constraints specified by the Resource Provider in ODRL will be translated and imported

to a dedicated consumer-side policy model ontology, so as (i) intentions to be evaluated

against both rulesets with the appropriate conflict resolution among rules and rule

combination mechanisms in place, and (ii) updated intentions to be expressed in ODRL.

To this end, the related ODRL adaptor is currently under construction. Further, certain

aspects of the DPW plugin are still in progress and will be documented in upcoming

deliverables, mainly within WP3. These include: extension with and adaptations in

support of additional UPCAST-specific requirements (e.g., involve datasets and data

products as first-class citizens, provide direct linkage to the execution environment, and

facilitate additional DPW-wide constraints addressing pricing or energy footprint

considerations); introduction of new notation into the DPW design tool to support above

enhancements (e.g., for datasets and FML operations); aspects pertaining to the

48

interoperation with other data plugins, like Resource Specification & Discovery,

Negotiation & Contracting, Pricing, Environmental impact optimiser, etc.

Federated Machine Learning:

Advance on the GUI of the plugin to improve usability, and of the packaging of the

necessary software agents to facilitate installation.

ANNEX I ACRONYMS & ABBREVIATIONS

Acronyms

Table 1: Acronyms List

CP Consortium Plenary

DoA Description of Action

PC Project Coordinator

PMB Project Management Board

PPR Project Periodic Report

QM Quality Management

RM Risk Management

TM Technical Manager

WPL Work Packages Leaders

DMP Data Management Plan

GDPR General Data Protection Regulation

RBS Risk Breakdown Structure

Abbreviations

Table 2: Acronyms List

Acronyms List

49

Abbreviation List

API Application Programming Interface - A set of rules and protocols that allows
different software applications to communicate and interact with each
other.

DCAT Data Catalog Vocabulary is a metadata standard used to describe datasets,
data catalogs, and data portals.

DMP A document that outlines how data will be handled throughout the research
project, including data collection, storage, sharing, and preservation.

DOI Digital Object Identifier - A unique alphanumeric identifier assigned to a
digital object, such as a dataset or publication, to provide a persistent link
to its location on the internet.

ETL Extract, Transform, Load - The process of extracting data from various
sources, transforming it into a consistent format, and loading it into a target
system or database.

FAIR Findable, Accessible, Interoperable, and Reusable - A set of principles that
aim to make data discoverable, accessible, and usable by both humans and
machines.

GDPR The European Union regulation that governs the protection and privacy of
personal data. It sets guidelines for data processing, consent, and
individuals' rights.

NDA Non-Disclosure Agreement - A legal contract that establishes confidentiality
obligations between parties involved in sharing sensitive or proprietary
information.

NFR Non-Functional Requirements - Requirements that specify the
characteristics and qualities of a system, such as security, performance,
scalability, and usability.

PII Personally Identifiable Information - Information that can be used to identify
an individual, such as name, address, contact details, or unique identifiers.

Pseudo
nymizat
ion

The process of replacing identifiable data with artificial identifiers, called
pseudonyms, to protect individual privacy while still allowing data analysis
and processing.

TLS Transport Layer Security is one of the most common encryption protocols
used to secure data during transmission over a network.

ANNEX II Open API Specification
Available on the Github Repository.

Privacy plugin: https://github.com/EU-
UPCAST/OpenAPISpecification/tree/main/privacy_plugin

https://github.com/EU-UPCAST/OpenAPISpecification/tree/main/privacy_plugin
https://github.com/EU-UPCAST/OpenAPISpecification/tree/main/privacy_plugin

50

Figure 36: Information Model API

Figure 37: Policy Model API

51

Figure 38: Workflow Model API

Figure 39: PrivUI API

