

2024

Draft Document

DELIVERABLE 3.1

THIS DOCUMENT IS IN DRAFT FORM AND PENDING OFFICIAL
APPROVAL. IT IS SUBJECT TO REVIEW AND MAY BE UPDATED.

UPCAST D3.1: Negotiation and Execution Modules v1

1

D3.1: Negotiation and

Execution Modules v1

Title: Document version:

D3.1 Negotiation and Execution Modules v1 0.60

Project number: Project Acronym Project Tittle

101093216 UPCAST Universal Platform

Components for Safe Fair

Interoperable Data Exchange,

Monetisation and Trading

This project has received funding from the European Union’s Horizon Research

and Innovation Actions under Grant Agreement № 101093216.

UPCAST D3.1: Negotiation and Execution Modules v1

2

Contractual Delivery Date: Actual Delivery Date: Deliverable Type*-Security*:

M18 (June 2024) M19 (July 15, 2024) O-PU

*Type: P: Prototype; R: Report; D: Demonstrator; O: Other; ORDP: Open Research Data Pilot; E: Ethics.

**Security Class: PU: Public; PP: Restricted to other program participants (including the Commission); RE: Restricted to a

group defined by the consortium (including the Commission); CO: Confidential, only for members of the consortium

(including the Commission).

Responsible: Organization: Contributing WP:

Sofoklis Efremidis MAG WP3

Contributing Authors (organization):

Abstract:

This document reports on the first version of the technologies and tools that support the negotiation

between a dataset provider and a dataset consumer (work that is carried out in T3.1), and also the

secure dataset execution and monitoring (work that is carried out in T3.2).

The negotiation process is detailed, along with the developed algorithms and the data models for (a)

the usage and access policies and (b) the produced contracts. Moreover, the secure dataset transfer

and the dataset execution engines that will be used by the project’s pilots are presented along with the

monitoring tasks of both the dataset execution and the dataset preparation tasks.

Keywords:

Negotiation, policy, contract, dataset execution, monitoring.

REVISION HISTORY

Revision: Date: Description: Author (Organisation)

v0.10 30/04/2024
First version of the document, with

suggested structure and content
Sofoklis Efremidis (MAG)

UPCAST D3.1: Negotiation and Execution Modules v1

3

v0.15 10/05/2024

Updates to the structure of the

document after feedback from

partners

Sofoklis Efremidis (MAG)

v0.30 19/062024
Updates based on contributions

received by partners
Sofoklis Efremidis (MAG)

v0.40 2/7/2024
Updates based on contributions and

comments by partners
Sofoklis Efremidis (MAG)

v0.50 12/7/2024 Updates after internal review Sofoklis Efremidis (MAG)

v0.60 15/7/2024 Updates after internal review Sofoklis Efremidis (MAG)

This project has received funding from the European Union’s Horizon Research and Innovation

Actions under Grant Agreement Nº 101093216.

More information available at https://upcastproject.eu/

COPYRIGHT STATEMENT

The work and information provided in this document reflects the opinion of the authors

and the UPCAST Project consortium and does not necessarily reflect the views of the

European Commission. The European Commission is not responsible for any use that

may be made of the information it contains. This document and its content are property

of the UPCAST Project Consortium. All rights related to this document are determined

by the applicable laws. Access to this document does not grant any right or license on

the document or its contents. This document or its contents are not to be used or treated

in any manner inconsistent with the rights or interests of the UPCAST Project

Consortium and are not to be disclosed externally without prior written consent from the

UPCAST Project Partners. Each UPCAST Project Partner may use this document in

conformity with the UPCAST Project Consortium Grant Agreement provisions.

TABLE OF CONTENTS

1 INTRODUCTION .. 6

1.1 Overview ..6

1.2 Purpose of the Document ...7

1.3 Scope of the Document ..7

1.4 Structure of the Document ...7

2 UPCAST ARCHITECTURE .. 9

https://upcastproject.eu/

UPCAST D3.1: Negotiation and Execution Modules v1

4

3 UPCAST WORKFLOW .. 12

4 NEGOTIATION AND CONTRACTING .. 17

4.1 Negotiation Scenarios .. 18
4.1.1 Negotiation Example .. 18
4.1.2 Pilot example .. 20

4.2 Negotiation Plugin Architecture .. 26

4.3 Usage Policy Data Model for Resource Provider ... 27
4.3.1 ODRL Offer .. 28
4.3.2 Dataset ... 29
4.3.3 Data Processing workflow Pattern .. 29
4.3.4 Natural Language component ... 29

4.4 Intentions Data Model for Resource Consumer ... 29
4.4.1 ODRL Request .. 30
4.4.2 Dataset ... 31
4.4.3 Resource consumer intentions modelling and compliance by design .. 31

4.5 Negotiation Protocol .. 39
4.5.1 Negotiation process ... 40
4.5.2 Negotiation Terms and Preferences ... 42
4.5.3 Negotiation sequence diagrams ... 44

4.6 Contract Data Model .. 47
4.6.1 ODRL Agreement .. 48
4.6.2 Data Processing Workflow .. 49
4.6.3 Dataset ... 49
4.6.4 Natural Language component ... 49
4.6.5 MetaData .. 49
4.6.6 Human Readable Contract Terms ... 50

4.7 Legal Terms .. 50

5 DATA EXCHANGE AND EXECUTION .. 53

5.1 Data Exchange .. 53
5.1.1 Data exchange scenarios .. 54
5.1.2 Capabilities ... 55
5.1.3 Architecture .. 55
5.1.4 Plugin interoperability .. 57

5.2 UPCAST Execution ... 57

5.2.1 Pilot Execution Environments .. 57
5.2.2 Nextflow ... 60
5.2.3 SIMPIPE Execution Environment ... 62

6 MONITORING .. 65

6.1 Execution Monitoring ... 65

6.1.1 Monitoring Process .. 65
6.1.2 Monitoring metrics ... 67

UPCAST D3.1: Negotiation and Execution Modules v1

5

6.2 Plugin Monitoring ... 69

7 CONCLUSIONS .. 71

8 REFERENCES... 72

9 ACRONYMS ... 73

LIST OF FIGURES
Figure 1: UPCAST Architecture. ... 9

Figure 2: Core functionality of UPCAST MVP. ... 13

Figure 3: Nissatech information model. .. 22

Figure 4: Negotiation and Contracting Plugin Architecture. ... 26

Figure 5: UPCAST Offer Data Model. .. 28

Figure 6: UPCAST Request Data Model. .. 30

Figure 7: UPCAST Data Processing Workflow Model. .. 32

Figure 8: Data Processing Workflows modelling using goodFlows. 34

Figure 9: Dataset discovery through goodFlows. ... 34

Figure 10: Properties of the discovered dataset. ... 35

Figure 11: Conflict identification prior to negotiation... 35

Figure 12: Overview of the verification process. .. 37

Figure 13: UPCAST Negotiation Data Model. ... 39

Figure 14: Negotiation Flowchart and State Machine. .. 40

Figure 15: Simplified Sequence Diagram. ... 46

Figure 16: Negotiation Sequence Diagram. ... 47

Figure 17: UPCAST Contract Data Model. ... 48

Figure 18: One to one data exchange scenario. ... 54

Figure 19: One to many data exchange scenario. ... 55

Figure 20: Safe data delivery Plugin Architecture. ... 56

Figure 21 Table containing the user request for data set generation. 59

Figure 22 User interface showing the status of the user request. ... 59

Figure 23: SIMPIPE Architecture. ... 63

LIST OF TABLES
Table 1: Sample of input data, operations, and purpose or output data. 21

Table 2: Secure Data Delivery capabilities. ... 55

UPCAST D3.1: Negotiation and Execution Modules v1

6

1 Introduction

1.1 Overview

UPCAST, Universal Platform Components for Safe Fair Interoperable Data Exchange,

Monetisation and Trading, provides a set of universal, trustworthy, transparent and user-

friendly data market plugins for the automation of data sharing and processing

agreements between businesses, public administrations and citizens. The UPCAST

plugins will enable actors in the common European data spaces to design and deploy

data exchange and trading operations guaranteeing:

• automatic negotiation of agreement terms;

• dynamic fair pricing;

• improved data-asset discovery;

• privacy, commercial and administrative confidentiality requirements;

• low environmental footprint;

• compliance with relevant legislation;

• ethical and responsibility guidelines;

• Accountability, auditing, and compliance of dataset executions.

UPCAST will support the deployment of Common European data spaces by

consolidating and acting upon mature research in the areas of data management,

privacy, monetisation, exchange and automated negotiation, considering efficiency for

the environment as well as compliance with EU and national initiatives, AI regulations

and ethical procedures. Five real-world pilots across Europe will exercise a set of

working platform plugins for data sharing, monetisation and trading, deployable across

a variety of different data marketplaces and platforms, ensuring digital autonomy of data

providers, brokers, users and data subjects, and enabling interoperability within

European data spaces. UPCAST aims at engaging SMEs, administrations and citizens

by providing a transferability framework, best practices and training to endow users to

deploy the new technologies and maximise impact of the project.

The work reported in this deliverable has been carried out in Work Package 3, Negotiation

and Execution, which addresses the following project objectives:

• Objective 2: Automate privacy-compliant, fairly-priced negotiation and

development of data sharing and processing contracts.

• Objective 3: Enable scalable, safe, secure and verifiable data sharing and trading.

• Objective 4: Enable interoperability of data sharing across different entities,

platforms and marketplaces.

• Objective 5: Provide a legal and ethical framework for automated contracts.

• Objective 6: Improve environmental sustainability of data processing workflows.

These project objectives will be achieved by WP3 through the following sub-objectives:

• Objective 3.1: To integrate the privacy and pricing discovery and integration tools

from WP2 and deliver a solution supporting an agile and sustainable negotiation

process involving the corresponding stakeholders.

UPCAST D3.1: Negotiation and Execution Modules v1

7

• Objective 3.2: To provide and integrate the components fulfilling the security

framework upon the requirements and architecture constraints emanating from

WP1 and WP2.

• Objective 3.3: To design, model, implement and assess an environmental impact

model which drives UPCAST platform to run on an optimal operating point.

1.2 Purpose of the Document

This document reports on work that has been carried out in tasks T3.1 and T3.2 of WP3

that relates to the negotiation tasks between dataset providers and consumers, the data

exchange and execution of datasets between the two stakeholders, and the monitoring

of the dataset execution and data preparation. The document provides the technical

design of the corresponding plugins and execution environments.

1.3 Scope of the Document

This document is based on the work that has been carried out in Tasks T3.1 and T3.2 of

WP3. The description of the tasks is as follows:

Task 3.1 Contract Negotiation Module. T3.1 develops the technology and tools to

automatically reconcile conflicting requirements, negotiate, recommend, amend,

enforce, and update agreements between partners. The task also develops theory,

algorithms and tools for planning and optimisation of a workflow. Based on the output

of WP2, the tools will re-structure or update the workflow achieving the optimal trade-off

between price, computational cost, privacy enforcement and energy efficiency.

Task 3.2 Safe and Secure Execution and monitoring. T3.2 implements the safe and

monitored execution plugin by providing a distributed proxy to ensure the safe, traceable

and secure data exchange within secure execution environments, on the cloud or on

local servers, supported by the Nokia Data Marketplace technology. For monitoring, the

task creates workflows’ Digital Twins along with the necessary visualizations for all

phases (from design to agreement and performance) based on the KPIs identified by the

pilot users and the data coming from the connectors developed in Task 4.1.

Deliverable D3.1 reports on the first version of the negotiation, data sharing, execution,

and monitoring modules of UPCAST.

1.4 Structure of the Document

The remainder of the document is organised as follows: Chapter 2 gives an overview of

the UPCAST Architecture to facilitate the presentation of the data exchange and

execution, negotiation and monitoring plugins that are presented in the following

chapters and put them in the context of the Architecture. Chapter 3 presents the UPCAST

MVP and the typical UPCAST workflow that relates to the preparation, annotation,

publishing, discovery, negotiation and execution of a dataset. Chapter 0 presents the

UPCAST support for the negotiation actions between a dataset provider and a dataset

consumer, which, if successful, results to a contract between them. Moreover, the data

models of policies and contracts are presented in this chapter. Chapter 5 presents the

data exchange activities between a dataset provider and a dataset consumer as well as

the support of UPCAST for the execution of the Data Processing Workflows. Chapter 6

UPCAST D3.1: Negotiation and Execution Modules v1

8

presents the monitoring functions of UPCAST, which collect execution related data for

logging key actions during dataset execution and confirming compliance to the agreed

contract between the dataset provider and the consumer, and data that relate to the

preparation of a dataset by the dataset provider. Finally, Chapter 7 concludes the

document.

UPCAST D3.1: Negotiation and Execution Modules v1

9

2 UPCAST Architecture
This chapter presents the UPCAST Architecture that will be used for the developments

and integration tasks of the project. The final version of the UPCAST Architecture is an

extension of the one presented in [1] and is presented in detail in [2] and is repeated in

this chapter for completeness of the document.

Figure 1: UPCAST Architecture.

Figure 1 shows the UPCAST Architecture. The Architecture shows the domains of the

Dataset Provider, the Dataset Consumer and the Data Sharing Platform, which is an

abstraction of the Data Marketplace. The Data Sharing Platform allows the

authentication of the Providers and Consumers, and also provides the hosting

environment to which the components of the architecture (plugins) are deployed. The

UPCAST Architecture is centralized as the Data Sharing Platform serves as the single

place of interaction between the Dataset Provider and the Dataset Consumer. UPCAST

has also assessed a distributed version of the architecture, in which the dataset provider

and the dataset consumer interact in a peer-to-peer manner with no intermediate Data

Sharing Platform. The authentication, persistency, and hosting for plugin deployments

functions that are provided by a Data Sharing Platform are crucial for the operation of

the UPCAST platform itself, therefore the project has opted for the centralised version of

the architecture.

The UPCAST architecture shows the plugins (and corresponding functions) that are

available to the provider and those that are available to the consumer as well as

dashboards for visualization. A dataset provider uses a subset of the plugins to perform

the specification of the dataset resource for subsequent publishing it to a marketplace.

UPCAST D3.1: Negotiation and Execution Modules v1

10

Resource specification includes the annotation of the dataset with plain (type of data,

format, creation time, etc.) and semantic metadata, its environmental footprint for its

storage by the provider, an estimate of its price, and definition of usage and access

policies. These functions are supported by the corresponding plugins as shown in the

architecture, which can be used through the Provider Dashboard. Once a dataset

resource has been annotated it can be published to a marketplace for interested

consumers to search for it.

The consumer uses also a subset of the plugins to specify a Data Processing Workflow

to model the processing they want to do on a dataset. Moreover, the consumer may also

define policies that is obliged to abide with, for example internal policies or legal

regulations, and can also make estimates of the environmental impact of the dataset

execution that is modelled by the Data Processing Workflow. Once these specifications

are prepared through the corresponding plugins, the consumer searches for datasets

that meet their criteria. Once a dataset is discovered, a negotiation takes place between

the provider of the dataset and the consumer. The negotiation is supported by the

negotiation plugin and its purpose is for the provider and the consumer to agree on the

same terms for the dataset execution, as, on one hand the provider has expressed his

usage policies, and, on the other hand, the consumer has expressed his own policies

they may be subject to for the execution of the dataset. The negotiation, if successful,

will result in a contract, which, once agreed by both parties, is secured for later checking

compliance of the dataset execution with the terms of the contract. The functions and

respective plugins that are available to the consumer may be used through the

Consumer Dashboard.

Once a negotiation is completed and a contract has been agreed and signed, execution

of the dataset can be performed. The first step for the execution to commence is to

transfer the dataset from the provider to the consumer space. Once the dataset has been

securely transferred, a workflow execution environment is used to carry out the

execution. Execution may take place in various execution environments including the

consumer’s space, the marketplace, a trusted third party, or in the provider itself. The

UPCAST architecture has been shaped to show execution of the dataset only in the

consumer space, as the result of requirements expressed by UPCAST pilots.

One exception in the consumer processing is the case of Federated Machine Learning,

in which parts of the execution may take place in the provider’s environment, the reason

being that analytics processing of classified data may be allowed but the data itself may

not be allowed to leave the provider’s environment. In this case, the provider needs to

provide a hosting and execution environment for containerized FML components to

execute, The UPCAST architecture in Figure 1 contains a Federated Agent component,

which abstracts the parts of the execution that need to take place in the provider’s space.

The Federated Agent component is further highlighted through the surrounding box to

indicate that such components should be containerized.

Execution of the dataset is monitored through a number of metrics, which the execution

has the obligation to emit for the producer to verify compliance with the contract.

Execution takes place in a fully controlled and auditable way, which means that all

elements of the execution, including the actual workflow, the (dockerized) components

UPCAST D3.1: Negotiation and Execution Modules v1

11

used, the monitoring metrics that are emitted, and so on, can be verified either in real

time or in a later stage that they comply to the terms of the contract that have been

agreed and that executions are reproducible and auditable. Real time monitoring and

corresponding compliance is performed by the Monitoring and Compliance plugins. If

any violations are detected during the execution, alerts are shown in the providers’

dashboard. Moreover, analytics processing of the monitoring events that are collected

during execution are also shown in the provider’s dashboard.

UPCAST D3.1: Negotiation and Execution Modules v1

12

3 UPCAST Workflow
UPCAST provides support for the management, negotiation, and exploitation of

resources through a set of plugins that can be installed in Data Marketplaces or other

data platforms that can mediate data transactions between providers and consumers.

A resource can be a dataset, a data operation or an artefact (such as a machine learning

model).

The UPCAST Minimum Viable Product (MVP) is an implementation of the minimum

functionality of the UPCAST plugins (described in [2]) that satisfies the prioritised

requirements that have been selected based on the pilots’ needs and project vision. The

MVP will serve to gather valuable feedback for further development.

This chapter presents the UPCAST MVP functionality from a user perspective. In the

context of this presentation, users of UPCAST are ether dataset providers or dataset

consumers. Figure 2 illustrates the core functionality that is included in the UPCAST MVP

as a set of functions performed by or provided to either the Dataset (Resource) Provider,

the Dataset (Resource) Consumer, or in some cases to both. The figure shows the

actions the dataset provider and the dataset consumer can take and the components

that support these actions. This deliverable focuses on the support for Negotiation and

Contracting, Secure Data Exchange, and Monitoring. Moreover, the execution

environments that will be used by the project pilots are also presented in subsequent

chapters.

UPCAST D3.1: Negotiation and Execution Modules v1

13

Figure 2: Core functionality of UPCAST MVP.

UPCAST D3.1: Negotiation and Execution Modules v1

14

For the MVP definition the focus is on datasets, but some plugins are applicable for other

types of resources. The UPCAST plugins are modules that can be deployed on a data

marketplace (or other data sharing platform) and offer defined functionality to users

through the marketplace. Plugins interact with each other and with the marketplace in

which they are deployed through well-defined APIs. The users, acting as resource

providers or resource consumers, can select a desired plugin from the marketplace and

invoke the required functionality through the provided user interface (depicted as

dashboard in Figure 2).

Figure 2 shows a representative user journey with activities that involve all of the

UPCAST plugins. The upper part of Figure 2 illustrates the actions of a resource provider

who wants to publish a dataset1 using UPCAST plugins. The preparation of a dataset

(collection of data, cleaning, and preprocessing) is a necessary action any provider

needs to take but it is outside the scope of UPCAST. Therefore, the provider experience

starts with the dataset annotation in which the provider describes the resource using

basic metadata or semantic metadata and defines access and usage policies. The

provider may also assign an energy profile to the resource for its generation and storage

and also associate a price or price range to the resource to facilitate its monetisation. A

typical sequence of actions by a provider who uses the UPCAST plugins is as follows:

RP1. Define resource metadata: Using the Provider Dashboard, the provider creates

a resource specification and annotates the resource with basic and semantic

metadata using UPCAST vocabulary and domain-specific vocabularies.

RP2. Specify resource privacy and usage policy: Using the Provider Dashboard the

provider can define the privacy and usage control policies for the resource that

are supported by the Privacy and Usage Control plugin.

RP3. Estimate provider environmental cost: Using the Provider Dashboard, the

provider can create the energy profile for the resource that relates to the

collection and storage of the dataset with the support of the Environmental

Impact Optimiser Plugin.

RP4. Estimate resource price: Using the Provider Dashboard, the dataset provider can

assign a price or price range to the resource by using the functions of the Pricing

plugin.

RP5. Publish resource: The dataset provider publishes the resource annotated with

the resource specification in a data marketplace or a data catalogue provided by

a broker so that potential consumers can discover the resource. This

functionality is provided by a broker or a marketplace.

RP6. Negotiate terms and establish contract. ADD TEXT. The dataset provider and the

dataset consumer need to negotiate terms of the policies and requirements that

are expressed by both sides. Negotiation is an iterative process, which, if

successful, will result into a contract that forms the basis for the dataset

workflow execution and verification for compliance.

RP7. Generate Analytics and verify compliance. The dataset provider received in their

1 This chapter focuses on datasets, but some plugins are applicable to other types of resources.

UPCAST D3.1: Negotiation and Execution Modules v1

15

dashboard monitoring data and corresponding analytics for the dataset

execution. Compliance of the execution is checked against the agreed terms of

the contract and any violations are notified to the provider.

The lower part of Figure 2 illustrates the actions of a resource consumer who wants to

make use of a dataset resource. This consumer starts with "Define Data Processing

Workflow" (RC1) which may utilise datasets from several providers, in general. The DPW

may contain generic actions, like transformations or aggregations on datasets, and also

specialized actions like performing Federated Machine Learning (FML) on datasets that

are not allowed to be transferred outside the domain of a dataset provider. valuation of

a dataset, and Integration of several datasets collected possibly from multiple providers.

These actions are implemented by respective components as shown in Figure 2, and are

not represented in the overall activities of the dataset consumer, as they are special

steps of the DPW the consumer models.

RC1. Define Data Processing Workflow: The consumer defines the processing

workflow for the dataset as a series of actions that pertain to the pre-processing

and actual processing of datasets using the Data Processing Workflow plugin. A

DPW model is defined, and the intended usage and the access and usage policies

for the DPW are specified.

RC2. Estimate consumer environmental cost. The consumer makes an estimate of

the environmental cost that will be incurred when processing the dataset. The

cost be estimated based on the workflow, and the characteristics of the

processing environment that will be used.

RC3. Search resource: The consumer searches and discovers resources to include in

the DPW by searching or browsing a Dataset Catalogue or getting suggestions

on relevant resources using the Resource Discovery plugin.

RC4. Negotiate terms and establish contract: The dataset consumer negotiates with

resource providers regarding the terms of access, usage and pricing of the

datasets. The result of the negotiation, if successful, is a contract that states the

terms of access and usage, as well as the pricing of the dataset under

negotiation. The negotiation and contracting tasks are supported by the

corresponding plugin that facilitates and automates the negotiation process and

can be used by the dataset producer (see RP6) and consumer.

RC5. Secure data transfer: With the help of the Secure Data Delivery plugin, the

dataset contracted will be transferred securely to a trusted environment, which

in the case of the UPCAST pilots is the consumer one, for processing.

RC6. Execute data processing workflow: Using Safe and Secure Execution Plugin, the

consumer starts the DPW execution for the processing of the dataset subject to

the terms of access and usage policies that have been negotiated and agreed

between the provider and the consumer and are expressed in the negotiation

contract.

RC7. Monitor execution of data processing workflow: The UPCAST Execution

Monitoring plugin monitors the execution of the DPW. The collected monitoring

data are used for generating analytics for the provider and also for checking the

compliance with the agreed contract. The compliance plugin receives monitoring

UPCAST D3.1: Negotiation and Execution Modules v1

16

data and notifies the dataset provider in case of any breaches of the contract

(RP6), such as any access or usage rule violated during the DPW execution.

The following chapters give details for the Negotiation and contracting plugin, the Secure

Data transfer plugin, the monitoring plugin, as well as the execution environments that

will be used in UPCAST for the execution of the DPWs of the project pilots.

UPCAST D3.1: Negotiation and Execution Modules v1

17

4 Negotiation and Contracting
This chapter presents the negotiation and contracting functions of UPCAST. The chapter

starts with a description of the problem and the motivation for having such

functionalities, and then moves on to give the architecture and design of the

corresponding module. A video demo of the negotiation plugin is shown at Negotiation

Plugin Demo.

Often, the processing intentions of a data consumer for a dataset of their interest differ

from what the data provider is willing to allow. These differences may include the

purpose of the processing, the time interval for which the provider is willing to allow

access, or the price to pay. Nevertheless, these differences are not necessarily

irreconcilable, and both parties can often reach an agreement through negotiation.

The Negotiation and Contracting plugin within the UPCAST, serves as a pivotal

component, streamlining the complex processes of negotiation and contract

management. With its multifaceted functionality, this plugin facilitates efficient

communication and collaboration between data producers and data consumers. It

enables users to initiate, track, and finalize negotiations seamlessly, providing a

centralised platform for discussing terms, pricing, and specifications. Moreover, the

plugin incorporates robust contract management features, allowing stakeholders to

create, review, and execute contracts with ease. By automating routine tasks and

offering customizable Data Processing Workflows (DPWs), it enhances data sharing

while ensuring compliance with regulatory requirements.

The UPCAST negotiation plugin allows users to create, offer, request, and negotiate data

sharing contracts. UPCAST contracts extend the usage control specification defined by

International-Data-Spaces-Association (IDSA 2), which in turn uses the Open Digital

Rights Language 3 (ODRL), enabling more descriptive and technology-independent

contracts. UPCAST contracts also utilise other ontologies such as Data Privacy

Vocabulary (DPV4), which defines an ontology that allows for the definition of the use,

processing and purpose of processing of data under relevant legislation, notably the

GDPR.

UPCAST’s negotiation plugin serves as a Policy Management Point (PMP) for usage

restrictions. It reads machine-readable contracts and checks against information from

the privacy and usage control, environmental impact, and pricing plugins, and reaches

an agreement if there are no policy conflicts. If conflicts arise, a negotiation will be

initiated, allowing the data provider or consumer to present counteroffers. The provider

will ultimately decide the negotiation's outcome by agreeing, rejecting, or sending

another counteroffer. Additionally, the plugin provides a Policy Administration Point with

a user-friendly graphical interface, enabling users to edit policies. This allows users to

define restrictions, privacy, and usage policies.

2 https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol

3 https://www.w3.org/TR/odrl-model/

4 https://w3c.github.io/dpv/dpv/

https://insideidc.sharepoint.com/:f:/r/sites/UPCAST/Shared%20Documents/WP3%20-%20Negotiation%20and%20Execution/Deliverables/D3.1%20Negotiation%20and%20Execution%20Modules%20v1/Demo%20Video?csf=1&web=1&e=Kjafeu
https://insideidc.sharepoint.com/:f:/r/sites/UPCAST/Shared%20Documents/WP3%20-%20Negotiation%20and%20Execution/Deliverables/D3.1%20Negotiation%20and%20Execution%20Modules%20v1/Demo%20Video?csf=1&web=1&e=Kjafeu
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol
https://www.w3.org/TR/odrl-model/
https://w3c.github.io/dpv/dpv/

UPCAST D3.1: Negotiation and Execution Modules v1

18

UPCAST combines the strengths of two previously demonstrated technologies:

Southampton’s toolkit for enabling personal consent (EPCON) to support business rules

and the goodFlows tool from ICTabovo, that fosters automated process re-engineering

towards compliance with the GDPR, based on comprehensive modelling of the

underlying rules.

The UPCAST negotiation plugin receives as input machine-readable access and usage

constraints of datasets previously defined using the Privacy plugin, and a machine-

readable list of processing intentions from a Data Consumer. The plugin provides

reasoning mechanisms to facilitate the reaching of an agreement between data

providers and data consumers, in particular, support for conflict identification,

preparation of counter-proposals based on configurable negotiation ranges, and

suggestion of conflict resolution actions to help reaching a contractual agreement. The

reasoning mechanism supports negotiation using various prevalence schemes (e.g.,

most recent rule prevails, deny overrides, stricter rules prevail, Inclusion-Exclusion

principle for comparing constraints, pre-actions, and contextual conditions) [3].

The Negotiation functionality within UPCAST is a comprehensive tool designed to

facilitate the intricate process of reaching agreements between Resource Providers

(RPs) and Resource Consumers (RCs). Triggered by the predefined matching of RP and

RC for negotiation, along with the establishment of negotiation terms and preferences

encompassing alternative values and interdependent rules, the plugin ensures a

systematic approach to the negotiation process. Initially, it verifies the compatibility of

DPW against RP constraints, RC intentions, legal frameworks, and organizational

policies, while addressing pricing and environmental considerations within the data

source description. In the absence of conflicts, an automatic agreement is reached.

However, if conflicts arise, the plugin orchestrates a structured negotiation sequence,

managing the exchange of offers and requests (more generally, counter-offers) between

RP and RC, respectively. Through a user-friendly interface, both parties can propose,

modify and accept terms until a mutual agreement is achieved. The negotiation process

respects predefined negotiation ranges for each statement in the resource specification,

providing flexibility for adjustments. Upon agreement, the plugin proceeds to contract

generation, producing both machine-readable and natural language contracts.

Throughout the process, transparency is ensured as the negotiation outcome is

presented to both parties, empowering them to make informed decisions.

4.1 Negotiation Scenarios

4.1.1 Negotiation Example

A data provider makes an initial offer to share his health data; however, he mentioned

that the data must be anonymized and the purpose of data sharing must be Academic

Research. A data consumer who seeks the data marketplace, discovers the data

provider’s health data and finds them useful for processing. He also wants to display the

data for research and development purposes. Thus, he sends a request to the provider

to express his needs. The data provider agrees the request with a refinement on display

action; the consumer can display the data only via print media. If the consumer accepts

the counter-offer, an agreement between data provider and data consumer will be

established which will be finalised through a contract.

UPCAST D3.1: Negotiation and Execution Modules v1

19

The JSON specification of the above initial offer, request, and counter-offer in ODRL are

shown in the following.

Initial offer:

{

 "@context":

 "http://www.w3.org/ns/odrl.jsonld",

 "@type": "Policy",

 "uid": "http://example.com/policy:001",

 "profile": "http://example.com/odrl:profile:11",

 "permission": [

 {

 "target": "http://example.com/ProviderHealthDataset",

 "action": "share",

 "duty":{

 "action":"anonymize",

 },

 "constraint":

 {

 "leftOperand": "Purpose",

 "operator": "eq",

 "rightOperandReference": {"@value": "https://w3id.org/dpv#AcademicResearch", "@type": "xsd:uid"}

 }

 }

]

}

Request:

{

 "@context":

 "http://www.w3.org/ns/odrl.jsonld",

 "@type": "Policy",

 "uid": "http://example.com/policy:001",

 "profile": "http://example.com/odrl:profile:11",

 "permission": [

 {

 "target": "http://example.com/ProviderHealthDataset",

 "action": "display",

 "duty":{

 "action":"anonymize",

 },

 "constraint":

 {

 "leftOperand": "Purpose",

 "operator": "eq",

 "rightOperandReference": {"@value": "https://w3id.org/dpv#ResearchAndDevelopment", "@type": "xsd:uid"}

 }

 }

]

UPCAST D3.1: Negotiation and Execution Modules v1

20

}

Counter-offer:

{

 "@context":

 "http://www.w3.org/ns/odrl.jsonld",

 "@type": "Policy",

 "uid": "http://example.com/policy:001",

 "profile": "http://example.com/odrl:profile:11",

 "permission": [

 {

 "target": "http://example.com/ProviderHealthDataset",

 "action": [{

 "rdf:value": { "@id": "odrl:display" },

 "refinement": [{

 "leftOperand": "media",

 "operator": "eq",

 "rightOperand": { "@value": "print", "@type": "xsd:integer" },

 }]

 }],

 "duty":{

 "action":"anonymize",

 },

 "constraint":

 {

 "leftOperand": "Purpose",

 "operator": "eq",

 "rightOperandReference": {"@value": "https://w3id.org/dpv#ResearchAndDevelopment", "@type": "xsd:uid"}

 }

 }

]

}

4.1.2 Pilot example

This section illustrates a negotiation based on the Nissatech5 pilot [1], which relates to

the collection and processing of fitness-related data. They collect data points, generated

through wearable devices, fitness apps, and gym equipment, offer unique insights into

individual health and wellness, and help individuals make informed decisions about their

fitness routines, diet, and overall lifestyle. Moreover, aggregated fitness data has the

potential to contribute to broader public health initiatives and medical research. In this

example, the individuals that train at a gym play the role of data provider, while Nissatech

plays the role of data consumer that wants to process that data to create a product.

Table 1 shows sample input data from the data provider side, the purposes of data

consumer, and needed operations.

5 https://smart4fit.nissatech.com/

https://smart4fit.nissatech.com/

UPCAST D3.1: Negotiation and Execution Modules v1

21

Table 1: Sample of input data, operations, and purpose or output data.

Provider (Input data) –

From people / sensors

Operations (Algorithms) Consumer (Purposes)

• Heart rate data, from a

heart rate monitor,

such as a chest strap

or a wristband.

• Motion data, from an

accelerometer and a

gyroscope, which are

embedded in the

user's device or

wearable

• Location data, from a

GPS, which is

embedded in the

user's device or

wearable.

• Feedback data, from

the user's input, such

as voice commands,

touch gestures, or

buttons, to receive the

user's feedback,

preferences, and

goals.

• Users’ data such as

age, height, weight,

resting hour, etc.

• Users’ specific data

about their long-term

conditions, such as

diabetes,

cardiovascular

disease, and even

mental health

• VO2 max

• Anaerobic zone

data/aerobic data

• User Preferences

• Statistical analysis

• Heart rate analysis to

calculate the Avg, Min,

Max, and standard

deviation of the user's

heart rate during a

workout, and to

compare it with the

target heart rate zone

based on the user's

age, weight, and

fitness level.

• Mathematical (closed)

formulas

• Calorie estimation →

estimate the number

of calories burned by

the user during a

workout, based on the

user's weight, height,

age, gender, and

activity type and

duration

• Machine learning and

model training

• Activity recognition →

recognise the type of

activity that the user is

performing, such as

walking, running,

cycling, or swimming,

based on the sensor

data from the

accelerometer,

gyroscope, and GPS of

the user's device

• Data visualization

• Performance

evaluation -> display

the user's performance

metrics, such as

• Individual-related

purposes

• Fitness level

estimation (age,

resting heart rate, and

maximum heart rate to

estimate the user's

fitness level, which is

expressed as a

percentage of the

user's maximum

aerobic capacity)

• Workout intensity

adjustment (fitness

level, heart rate zone,

and personal goals) →

to provide the user

with appropriate

guidance and

feedback

• Health risk

assessment (the

user's vital signs,

medical history, and

environmental factors)

→ to identify and

predict potential health

risks for the user, such

as cardiac arrhythmia,

dehydration, or

overexertion

• Recovery time

estimation (heart rate

variability, muscle

fatigue, and sleep

quality)

• Exercise

recommendation

(fitness level, VO2

max, resting hour,

calories, height,

UPCAST D3.1: Negotiation and Execution Modules v1

22

speed, distance,

elevation, and

cadence, in graphs and

charts, and to highlight

the user's

achievements and

progress over time.

weight, GPS data,

accelerometer data,

electrocardiography

data)

• Diet recommendation

(calories, height,

weight)

• Groups-related

purposes

• Group comparison and

ranking,

• Gamification.

• Factories-related

purposes

• Advertising,

Figure 3 depicts the information model of the Nissatech pilot that defines the classes of

data items and instances that the policies will refer to.

Figure 3: Nissatech information model.

UPCAST D3.1: Negotiation and Execution Modules v1

23

Based on the above, three concrete examples are given in the following.

Example 1

In the first example, an ODRL policy is presented wherein the assigner, who is the data

provider, grants permission to share their calorie information with anyone. The policy

also specifies constraints regarding the date, exercise level, and exercise type.

Specifically, the date must fall within the range of X and Y, the exercise level should be

categorised as 'Difficult,' and the exercise type should be 'Aerobic'.

More concretely, the policy allows the sharing of burnt calories with any entity under the

conditions that the date of training sessions is between X and Y, the exercise level is

'Difficult,' and the exercise type is 'Aerobic.'

{

 "@context": [

 "http://www.w3.org/ns/odrl.jsonld",

 {

 "dcat": "http://www.w3.org/ns/dcat#",

 "dpv": "https://w3id.org/dpv#",

 "rdf":"https://www.w3.org/TR/rdf12-schema#"

 }

],

 "@type": "Policy",

 "uid": "http://example.com/policy:001",

 "profile": "http://example.com/odrl:profile:11",

 "permission": [

 {

 "assigner": "https://example.com/assigners/DataProvider",

 "assignee": "https://example.com/assignees/Nissatech",

 "target": [{

 "@type": "AssetCollection",

 "source": "http://example.com/TraniningSessions",

 "refinement":

 {

 "leftOperand":"Burnt-calories",

 "Operator":"eq",

 "rightOperand":{"@value":"SELECT ts.burntCalories

 FROM training_session ts

 JOIN Exercise ex ON ts.exerciseID = ex.exerciseID

 WHERE ex.exercise-Type = 'aerobic'

 AND ex.exercise-Level = 'difficult'

 AND ts.DateTimeDescription BETWEEN 'X' AND 'Y';", "@type":"xsd:SQL_query"}

 }

 }]

 "action": "share",

 "constraint":

 {

 "leftOperand": "Purpose",

 "operator": "eq",

 "rightOperandReference": {"@value": "https://w3id.org/dpv#AcademicResearch", "@type": "xsd:uid"}

http://www.w3.org/ns/odrl.jsonld
http://www.w3.org/ns/dcat
https://w3id.org/dpv
http://example.com/policy:001
http://example.com/odrl:profile:11
https://example.com/assigners/DataProducer
https://example.com/assignees/Nissatech
http://example.com/TraniningSessions
https://w3id.org/dpv#AcademicResearch

UPCAST D3.1: Negotiation and Execution Modules v1

24

 }

 }

]

}

Example 2

In this example trainers are given consent to use a trainee’s sessions information such

as burnt-calories, exercise type, and exercise difficulty level, under the conditions that

the date of training sessions falls between X and Y, with the purpose of generating a

personalised plan for the trainee. Note in this case the DPV term “personalisation” is

used as a general reference to the purpose.

{

 "@context": [

 "http://www.w3.org/ns/odrl.jsonld",

 {

 "dcat": "http://www.w3.org/ns/dcat#",

 "dpv": "https://w3id.org/dpv#",

 }

],

 "@type": "Policy",

 "uid": "http://example.com/policy:001",

 "profile": "http://example.com/odrl:profile:11",

 "permission": [

 {

 "assigner": "https://example.com/assigners/DataProvider",

 "assignee": "https://example.com/Trainers",

 "target": [{

 "@type": "AssetCollection",

 "source": "http://example.com/TraniningSessions",

 "refinement":

 {

 "leftOperand":"upcast:queryResult",

 "operator":"isAllOf",

 "rightOperand":{"@value":"SELECT ts.Burnt-Calories, ex.exercise-Type, ex.exercise-level

 FROM TrainingSessions ts

 JOIN Exercise ex ON ts.ExerciseID = ex.ExerciseID

 WHERE ts.DateTimeDescription BETWEEN 'X' AND 'Y';", "@type":"xsd:SQL_query"}

 }

 }]

 "action": "Use",

 "constraint":

 {

 "leftOperand": "Purpose",

 "operator": "eq",

 "rightOperandReference": {"@value": "https://w3id.org/dpv#Personalisation", "@type": "xsd:uid"}

 }

 }

]

http://www.w3.org/ns/odrl.jsonld
http://www.w3.org/ns/dcat
https://w3id.org/dpv
http://example.com/policy:001
http://example.com/odrl:profile:11
https://example.com/assigners/DataProducer
https://example.com/Trainers
http://example.com/TraniningSessions
https://w3id.org/dpv#Personalisation

UPCAST D3.1: Negotiation and Execution Modules v1

25

}

Example 3

In this example the data provider gives permission to individuals who are both trainee

and trainer to grant the use of trainee’s information to third parties for research and

development purpose, and as a refinement, the purpose must be approved by the

ministry of health. (grantUse in ODRL vocabulary).

{

 "@context": [

 "http://www.w3.org/ns/odrl.jsonld",

 {

 "dcat": "http://www.w3.org/ns/dcat#",

 "dpv": "https://w3id.org/dpv#",

 "rdf":"https://www.w3.org/TR/rdf12-schema#"

 }

],

 "@type": "Policy",

 "uid": "http://example.com/policy:001",

 "profile": "http://example.com/odrl:profile:11",

 "permission":[

 {

 "assigner": "https://example.com/assigners/DataProvider",

 "assignee": [{

 "@type": "PartyCollection",

 "source": "http://example.com/Trainee",

 "refinement": [

 {

 "leftOperand": "rdf:type",

 "operator": "eq",

 "rightOperandReferenec": { "@value": "http://example.com/Trainer", "@type": "xsd:uid"}

 }]

 }],

 "target": "http://example.com/TraniningSessions",

 "action": [{

 "rdf:value":{ "@id": "odrl:grantUse" },

 "refinement": {

 "leftOperand": "third-party",

 "operator": "eq",

 "rightOperandReference": { "@value": "http://example.com/ThirdParty", "@type": "xsd:uid" },

 }

 }]

 "constraint": [{

 {

 "leftOperand": "purpose",

 "operator": "eq",

 "rightOperandReference": {"@value": "https://w3id.org/dpv#ResearchAndDevelopement", "@type": "xsd:uid"}

 },

http://www.w3.org/ns/odrl.jsonld
http://www.w3.org/ns/dcat
https://w3id.org/dpv
http://example.com/policy:001
http://example.com/odrl:profile:11
https://example.com/assigners/DataProducer
http://example.com/Trainee
http://example.com/Trainer
http://example.com/TraniningSessions
http://example.com/ThirdParty
https://w3id.org/dpv#ResearchAndDevelopement

UPCAST D3.1: Negotiation and Execution Modules v1

26

 {

 "leftOperand":"approvedBy",

 "operator":"eq"

 "rightOperandReference": {"@value": "http://example.com/MinistryOfHealth", "@type": "xsd:uid"}

 }

 }]

 }]

}

4.2 Negotiation Plugin Architecture

The negotiation and contracting plugin architecture that is used for the developments

and integration tasks of the plugin is presented in Figure 4 and detailed below.

Figure 4: Negotiation and Contracting Plugin Architecture.

UPCAST D3.1: Negotiation and Execution Modules v1

27

• Consumer/Producer UI: Provides user-friendly interfaces for initiating and

managing negotiations.

• Initialisation Framework: There are two primary scenarios to start a negotiation,

separated by a dashed link in the framework.

o DPW plugin: Allows consumers to define their data processing

requirements.

o Dataset: This component, in alignment with the Data Catalog, provides

data sources for the DPW plugin.

o Data Catalog: Contains a list of advertised datasets. Providers register

their datasets and initial offers here. Consumers can also browse the

Catalog to find desirable datasets when the DPW plugin is not utilised.

• Conflict Resolution Framework

o Policy Engine: Ensures compliance with DPW and ODRL rules, resolving

any detected conflicts.

o NLP Conflict Resolution Engine: Resolves conflicts in the natural

language parts of the negotiation.

o Resource Description Conflict Resolution Engine: Addresses conflicts in

resource descriptions, such as price and environmental impacts.

• Negotiation API: Manages the entire negotiation process from initiation to

termination or finalization.

• Contracting Framework

o Contract Generator: Automates the creation of contracts, integrating all

relevant details from the negotiation.

o Meta-data Engine: Supports digital signatures, important data, and any

contract-related information.

4.3 Usage Policy Data Model for Resource Provider

The usage policy is defined by the data provider. In this section, we describe the UPCAST

Offer from the resource provider's perspective, which aligns with the usage policy data

model. Figure 5 illustrates the UPCAST Offer data model.

In UPCAST, the resource provider specifies a resource along with the associated access

and usage constraints. If a consumer finds the resource appealing but needs additional

access, they generate an UPCAST Request. The provider may accept the request outright

or reject it due to conflicts with their own policies. In response, the provider creates an

UPCAST Offer, which is a message related to the initial UPCAST Request; it is also called

a counter-offer.

The UPCAST Offer message consists of four parts: an ODRL Offer, a resource

specification, a Data Processing Workflow Pattern, and a Natural Language Part. The

following sections provide detailed explanations of these four components.

UPCAST D3.1: Negotiation and Execution Modules v1

28

Figure 5: UPCAST Offer Data Model.

4.3.1 ODRL Offer

The following shows the structure of a provider odrl:Offer.

sent by Data Provider

format ODRL, IDSA

properties Odrl:Rule Permission with none, one, or more duties as the

property of the Permission.

Prohibition with none, one, or more remedies as the

property of the Prohibition.

odrl:Action May include refinement(s)

[odrl:Asset] It defines as target in the request and it is one or many

data source that consumer wants to access. It may also

include none, one or many refinement(s)

[odrl:Party]

[idsa:Participa

nts]

It defines as assignee and assigner in the request; refer

to someone who get the permission and someone who

give the permission, respectively. It may also include

none, one or many refinement(s)

[odrl:Constrai

nt]

It defines any constraint on the rule based on the usage

policies. Logical constraint can be also included.

[odrl:uid] It identifies the rule.

The UPCAST Offer message is sent by a provider to initiate a contracting negotiation or

to respond to an UPCAST Request message sent by a consumer.

The odrl:Offer contains a Rule (odrl:Rule), which can be Permission, Prohibition, and Duty.

Since providers usually submit initial Offers to control the usage of their data sources,

they may offer a rule giving a Permission/conditional Permission based on a duty or

defining a Prohibition and its remedies.

A uid identifies a Rule. According to the IDSA specification, a consumer must include a

request property, which itself must have a @id property. If the odrl:Offer includes a

providerPid property, the request will be associated with an existing contract negotiation

UPCAST D3.1: Negotiation and Execution Modules v1

29

and a consumer’s UPCAST Request will be created using either the offer or offer.@id

properties. If the odrl:Offer does not include a providerPid, a new contract negotiation

will be created on provider side using either the offer or offer.@id properties and the

provider selects an appropriate providerPid. An offer.@id will generally refer to an

UPCAST Offer contained in a Catalog. If the provider is not aware of the offer.@id value,

it must respond with an error message. A Catalog or data marketplace in UPCAST is a

collection of entries representing datasets and their initial UPCAST Offers that is

advertised by a provider participant.

The dataset id is not required but can be included when the provider initiates a

contracting and negotiation. Different to a dataset (see DCAT Vocabulary Mapping), the

odrl:Offer inside an UPCAST Offer message must have an odrl:target attribute. However,

it's contained Rules must not have any odrl:target attributes to prevent inconsistencies

with the ODRL inferencing rules for compact policies.

4.3.2 Dataset

Dataset in the UPCAST Offer is an explicit pointer to the target dataset; and is applied to

resource description. To do this, the provider can create the energy profile for the

resource with the resource environmental cost suggested by the Environmental Impact

Optimiser Plugin. The environmental profile of the provider relates to the energy

consumption for the collection of the dataset and its storage. Moreover, the provider can

assign a price to the resource manually, or with the support of the Pricing plugin.

Therefore, pricing and declaring energy and environmental issues are done in Dataset of

the ODRL offer.

4.3.3 Data Processing workflow Pattern

Users generally define a series of actions related to pre-processing and processing of

datasets using UPCAST DPW plugin. Moreover, a user, specifically a provider, may define

access and usage control constraints at the level of the whole DPW as a pattern, in case

the latter is planned to be advertised as a resource to be used in other DPWs (more

information is given in section 4.6.2).

4.3.4 Natural Language component

The UPCAST negotiation and contracting plugin facilitates the creation of both machine-

readable and natural language contracts when the resource provider and consumer

reach an agreement. A natural language component is essential in the UPCAST Offer, as

it provides a human-readable representation of the terms. This ensures clarity and

understanding between the parties involved. Leveraging Large Language Models (LLMs)

enhances this process by generating accurate and contextually relevant natural

language summaries of the contract terms, improving communication and reducing

misunderstandings.

4.4 Intentions Data Model for Resource Consumer

This section describes the UPCAST Request Data Model which is depicted in Figure 6.

UPCAST D3.1: Negotiation and Execution Modules v1

30

Figure 6: UPCAST Request Data Model.

The UPCAST negotiation and contracting plug-in is triggered by sending an UPCAST

Request message. The UPCAST Request message has also several parts; an ODRL

request, a Dataset, a Data Processing Workflow, a Data Processing Workflow Pattern,

and a Natural Processing Part, which are explained in the following subsections.

4.4.1 ODRL Request

sent by Data consumer

format ODRL, IDSA

properti

es

odrl:Rule Permission with none, one, or more duties as the property

of the Permission.

odrl:Action May include refinement(s).

[odrl:Asset] It defines as target in the request and it is one or many data

source that consumer wants to access. It may also include

none, one or many refinement(s).

[odrl:Party]

[idsa:Particip

ants]

It defines as assignee and assigner in the request; refer to

someone who gets the permission and someone who gives

the permission, respectively. It may also include none, one

or many refinement(s).

[odrl:Constrai

nt]

It defines any constraint on the rule based on the usage

policies. Logical constraint can also be included.

[odrl:uid] It identifies the rule.

Purpose The consumer must specify the purpose of the request; for

what the requested data source will be used.

The UPCAST Request Message is sent by a Consumer to initiate a contracting

negotiation or to respond to an UPCAST Offer message sent by a provider. The

odrl:Request within the message contains a Rule (odrl:Rule) which can be Permission,

UPCAST D3.1: Negotiation and Execution Modules v1

31

Prohibition, and Duty. Since a consumer usually submits a Request to access a data

source, we focus on Permission.

The definition of the rule and its properties are the same as the ODRL Offer. Moreover,

the consumer should define his purpose of the request. A Purpose or goal, based on DPV

definition, describes the intention or objective of why the data is being used, and should

be broader than mere technical descriptions of achieving a capability. For example,

"Analyse Data" is an abstract purpose with no indication of what the analyses is for as

compared to a purpose such as "Marketing" or "Service Provision" which provide clarity

and comprehension of the 'purpose' and can be enhanced with additional descriptions.

Such modelling is in line with regulatory requirements regarding the specificity of

purposes, for example in GDPR.

To express the Purpose, consumers add a constraint to the rule; here, the purpose is an

instance of leftOperand property in ODRL and it is described as a defined purpose for

exercising the action of the rule. To be compliant with Purpose class in DPV, odrl:purpose

isA dpv:Purpose;

Based on the IDSA specifications, if the message includes a consumerPid property, the

request will be associated with an existing contracting and negotiation process. If the

message does not include a consumerPid, a new contracting and negotiation process

will be created on consumer side and the consumer selects an appropriate

consumerPid.

4.4.2 Dataset

The same as the UPCAST Offer, the UPCAST Request also needs a resource description

part in which the consumer may get/submit a suggested price or price range of the

resource and understand how the price is formed. Environmental issues of the request

are also defined in Dataset part by the consumer.

4.4.3 Resource consumer intentions modelling and compliance by design

A DPW is a model of dataset processing and compliance of consumer intentions. As the

negotiation and contracting processes heavily depend on it, they both have to be clear

and concrete.

Formally, a DPW is a graph where tasks are the nodes, and the edges define the

sequence of tasks, as well as the overall data and control flow. Edges carry information

that defines the nature of data to be transferred from one task to the next. This

information may refer to a specific dataset or describe the transferred data in abstract

terms, using a data type and potential additional constraints. An edge may also be

characterised by flow conditions and constraints, further specifying and/or restricting

the occurrence of implied transitions.

A resource consumer may specify an UPCAST Data Processing Workflow (DPW) leading

to the formation of one or more UPCAST requests. Users generally define a series of

actions related to the pre-processing and processing of datasets using the UPCAST DPW

plugin. A consumer specifies a DPW offering desired functionalities; specifically, it

defines intended data-centric processes alongside specific access and usage intentions

and/or requirements. The DPW is also used to produce the processing specification for

the dataset, which will be further converted to an execution specification.

UPCAST D3.1: Negotiation and Execution Modules v1

32

Moreover, the environmental impact optimiser will generate energy consumption

metrics for processes applied to the resource in the DPW and aggregate the energy

consumption.

4.4.3.1 Data Processing Workflow model

In general terms, a workflow describes a series of actions with well-defined sequential

relations and information dependencies among them. A workflow under execution is a

workflow instance, whereas its specification is provided by a workflow model. In UPCAST,

modelling of Data Processing Workflows adopts the approach elaborated in the context

of H2020 BPR4GDPR6 that leverages semantic technologies towards comprehensive

modelling of workflows with inherent support of constraints specification in a workflow

design. The underlying semantic ontology is referred to as the Workflow Model Ontology

(WMO).

Figure 7: UPCAST Data Processing Workflow Model.

The most fundamental artefacts of a workflow model are tasks and flows. The former

represent actions to be executed within the workflow, each describing the operation

performed by an actor on an asset. Flows express dependencies between tasks, are

represented through directed edges and are of two types: control and data. A control flow

dependency between two tasks tA and tB means that tB is executed only after the

execution of tA is completed; what the edge transfers is the thread of control, potentially

accompanied by the necessary control parameters, if any. On the contrary, a data flow

dependency assumes actual data of interest are exchanged (i.e., to be accessed and

processed by the destination task), denoting explicit data dependencies. Further, a

6 https://www.bpr4gdpr.eu

https://www.bpr4gdpr.eu/

UPCAST D3.1: Negotiation and Execution Modules v1

33

workflow model is complemented by the operational purposes it is meant to serve, and

the potential initiators, denoting entities authorised to initiate the workflow. Therefore, a

workflow model can be defined as a tuple T, FC, FD, Init, WFPu, such that: T is a finite set

of tasks t1, t2, …, tn ; FC and FD are sets of directed edges, expressing the control flow

and data flow relations among tasks; Init is the set of human actors that, according to

the given specification, are allowed to trigger the workflow execution; WFPu denotes the

set of purposes for which the workflow is intended to be executed. Tasks, edges,

purposes and initiators are instantiated as individuals of wmo:TaskNode, wmo:Edge,

wmo:wfPurposes and wmo:Initiators classes, respectively.

The core constituents of tasks are actors, operations and assets, while for flows, the

exchanged information is essential for edges definition. To adequately capture the core

workflow perspectives (control, data, and resource [4]) a comprehensive approach for

modelling these elements is adopted, centred around the notion of enhanced entities; the

latter describe elements that their definition is either concrete, or abstract and

constrained over attributes and/or subconcepts.

In this context, edges carry Information Entities that define the nature of data to be

transferred from one task to the next. A wmo:InformationEntity may refer to a specific

dataset, or describe transferred data in abstract terms, through a data type and potential

additional constraints. An edge may also be characterised by flow conditions and

constraints, further specifying and/or restricting the occurrence of implied transition.

Similarly, tasks’ operation, actors and assets are instantiated by the

wmo:OperationEntity, wmo:ActorEntity and wmo:AssetEntity classes. However, the

ontological specification of tasks includes an intermediate concept, that of execution

profiles, enabling the specification of variations regarding the execution of a task, unlike

the typically “monolithic” tasks’ definition of other approaches. This concerns two

aspects: differentiated execution based on some conditions, and capturing the

dependencies between the task’s actors, assets and operation constraints, that is,

precisely defining their valid combinations.

Execution profiles are modelled through individuals of the wmo:ExecutionProfile class,

appropriately linked to wmo:OperationEntity, wmo:ActorEntity and wmo:AssetEntity

instances, or, in the case of actors and assets, to logical structures thereof. Further, they

may be associated to wmo:TaskConditions, i.e., expressions defining conditions for the

profile to be executed. Task conditions describe real-time constraints external to the

workflow specification (e.g., contextual factors), or spanning beyond task boundaries,

that cannot be expressed on the basis of referenced entities’ attributes alone.

4.4.3.2 From DPW modelling to negotiation

For modelling Data Processing Workflows leveraging the WMO, UPCAST makes use of

the goodFlows 7 prototype provided by ICT Abovo. goodFlows allows graphical

specification of workflows along with its elements described above. Figure 8 provides

an overview of the respective environment.

77 https://www.ict-abovo.gr/goodflows

https://www.ict-abovo.gr/goodflows

UPCAST D3.1: Negotiation and Execution Modules v1

34

Figure 8: Data Processing Workflows modelling using goodFlows.

In the context of UPCAST, goodFlows is subject to several adaptations to implement

essential project functionalities. As regards negotiation, goodFlows is evolving across

several axes. First, the workflow modelling functionality shall constitute the consumer’s

gateway towards the discovery of datasets, as well as negotiating their acquisition. To

this end, Figure 9 illustrates dataset discovery from within the workflow modelling

environment, Figure 10 assumes that a dataset has been discovered and depicts its

properties, whereas Figure 11 showcases the conflicts identified that will result in the

initiation of the negation process.

Figure 9: Dataset discovery through goodFlows.

UPCAST D3.1: Negotiation and Execution Modules v1

35

Figure 10: Properties of the discovered dataset.

Figure 11: Conflict identification prior to negotiation.

Conflict identification between constraints defined by the resource provider and the

workflow specification created by the resource consumer comprises another important

functionality current added to goodFlows. To this end, the underlying rules’ base

containing organisational policies, regulatory provisions, etc., is extended with the

constraints set by the provider, in order to identify the conflicts and possible resolutions.

Conflicts identification leverages a mechanism for automated workflow model

verification against the underlying rules and its re-engineering towards becoming

compatible with these rules. This is based on a set of directives, provided by the rule

engine; the next two sections outline respectively, the directives and the mechanism for

model verification and re-engineering.

UPCAST D3.1: Negotiation and Execution Modules v1

36

4.4.3.3 Compliance directives

The verification of a workflow model with respect to the various underlying constraints

is performed based on its ontological representation and on a set of so-called

Compliance Directives, that indicate the terms under which the workflow in question is

compatible with the constraints, and thereby acceptable. Directives are generated

through reasoning over the Policy Model reflecting internal policies, regulatory

provisions, etc., as well as, in the context of negotiation, the constraints set by the

resource provider; its main elements are access control rules, used for defining

permissions, prohibitions and obligations over actions, i.e., structures that, similar to

tasks, indicate an operation performed by an actor on an asset [3].

Directives creation takes place on the basis of the pairs of all interacting tasks within the

workflow, along with their corresponding interactions (i.e., connecting edges)

themselves, what is being referred to as the Bilateral Associations (BA) of the workflow.

The reason for choosing this pair-wise fragmentation for the initial processing at the

level of Directives generation, is that a BA essentially constitutes the elementary unit of

flow. Thus, the instructions received are richer in semantics, since it is not only the tasks

that matter, but also their interrelations. The main types of Directives considered are:

• Bilateral Validity Directive (BVD): A directive of this type refers to one BA,

indicating, for a given purpose and initiator among the specified ones, one valid

actor--operation--asset combination for each task and a valid specification of the

relationship connecting the two tasks; the latter may refer to the edge as has

been defined by the designer, a different edge specification, or even one or more

tasks that must be inserted in between the two tasks, so that the control or data

flow between them is consistent. All other types of directives presented below

refer, in most cases, to a specific BVD, reflecting the fact that requirements and

prohibitions may depend on the existence and the different valid specifications

of the tasks originally appearing in the workflow.

• Input Requirement Directive (IRD): A task, though being “in principle” accepted,

needs to receive some additional input, not included in the BA under

consideration. The directive specifies the required input, (optionally) its source,

and the task within a valid BA that needs to receive it.

• Output Requirement Directive (ORD): A task specified within a valid BA must

provide (some of) its output to a certain task (or structure thereof). An ORD

defines the task in a valid BA that must communicate the data, the data

themselves and the task structure that must receive them.

• Task Presence Directive (TPD): A task structure must execute, complementing

reference BA tasks. If applicable, a TPD also indicates the relative position or

data association with respect to the BA task the required one(s) must be found

in; for example, a task may require that another has preceded at some point in

the workflow.

• Task Forbiddance Directive (TFD): A task must not be executed in the context of

a workflow, either at any point or within certain parts of the flow. Each of these

directives refers to a task defined by a BVD, specifying the task structure with

which the task under consideration is not allowed to coexist, along with their

relative position, if applicable.

UPCAST D3.1: Negotiation and Execution Modules v1

37

• Flow Forbiddance Directive (FFD): A task is not allowed to have read access to

two or more types of information during a single execution instance. Given a valid

BA, such a directive prescribes a forbidden additional incoming flow, by

specifying the data it is not allowed to receive but also, potentially, a particular

task that they must not come from.

All types of directives may optionally be associated with a contextual condition under

which the indicated specification, requirement or forbiddance must apply. Furthermore,

a precondition or a postcondition may be defined, denoting the fact that said directive is

enforceable if a task, or structure thereof, precede, respectively follow.

4.4.3.4 Workflow Verification

On the basis of the above-described directives, the verification of workflows takes place,

through a procedure summarised in Figure 12, and briefly explained in what follows.

Figure 12: Overview of the verification process.

As mentioned above, the directives are generated on the basis of Bilateral Associations

(BA). For the latter to be extracted, first the workflow model is decomposed to instance

subgraphs (IS); these correspond to the different variants the workflow may take, based

on the values assigned to all constraints associated with its flow. That is, when the

execution of a task implies conditional branching of the consequent flows based on

edge constraints, the mutually exclusive constraint spaces of outgoing edges are

separately considered, resulting in an execution tree; its leaves represent the space of

instance subgraphs. The concept of instance subgraphs has been often used in

workflow science, since it makes easier to handle by breaking up the workflow into

manageable components [5].

Based on IS, the Bilateral Associations (BA) are created, and thereupon verified

leveraging the associated functionality offered by the Privacy and Usage Control module,

particularly the goodFlows’ Policy Decision Point, resulting in the set D of Directives. The

cartesian combination of purposes and initiators (PIP) is then reduced to those pairs

that appear to be valid (VPIP) according to D, whereas D drives the verification of each

is  IS.

UPCAST D3.1: Negotiation and Execution Modules v1

38

The first step in the verification of an instance subgraph is concerns the extraction of

the different cases (Cis), derived from the Bilateral Validity Directives (BVD) associated

with is. Each case c reflects an execution variant of is, where each task can be executed

in a unique manner and all edges between tasks are the ones prescribed by the

corresponding BVDs. To make this clearer, for every BA <ti, ek, ti+1>, each derived BVD

comprises a structure <ti
*, ek

*, ti+1
*> where ti

* and ti+1
* incorporate exactly one execution

profile each, and ek
* is the edge appropriately adapted. It is important to stress that ek

*

may include additional tasks mediating ti
* and ti+1

*; this is often the case, e.g., with tasks

performing data anonymisation or encryption. Eventually, each case c is a projection of

is, according to a valid combination of <ti
*, ek

*, ti+1
*> structures, derived from the BVDs.

The generation of cases Cis is followed by their verification and appropriate

transformation, considering also the rest of Directives. In this context, the behavioural

norm of each task t in a case c is extracted by the directives Dc pertaining to the case.

Essentially, norms comprise groups of compliance patterns that span across all

Directives’ types and can be verified together for t.

Forbiddance Norms (FN) reflect requirements implied by TFD and FFD. Provisions

described by Direct Norms (DN) concern tasks that should be present in the workflow

directly connected with t via an edge, either incoming or outgoing. On the other hand,

Indirect Pre- (IPrN) and Indirect Post-Norms (IPoN) indicate tasks that should precede,

respectively follow, the execution of t, with relative position other than direct connection,

whereas an Existence Norm (ExN) implies the need for a task to exist in the workflow at

any position. State Norms (StN), derived from BVD, reflect requirements related to data

state. Finally, norms can be conditional or definite, depending on whether the

corresponding Directives are associated with pre- and/or post-conditions, or not.

All tasks comprising the case are verified against the associated norms. Therefore, tasks

are topologically sorted [6], providing for both forward and backward traversal, and the

application of the norms for the progressive transformation of the case c takes place,

resulting to its verified version vc (or to failure). The procedure begins and finishes with

the application of forbiddance provisions; the reason is that, on the one hand, the case

may be rejected at the very beginning due to some conflict implied by FN, while, on the

other hand, checking against forbiddances is deemed necessary following any

transformations that may have happened due to the application of the other types of

norms.

The latter takes place in three phases; first, the definite provisions are applied, followed

by the conditional ones. In each phase, direct norms precede indirect pre- and post-

norms; the reason why indirect norms are not applied together, as is the case with direct,

is that post- norms require traversing the tasks of the case in a backward manner. Third,

norms related with data state are applied, in order to perform the corresponding

verification and transformation after all other norms have been applied and,

consequently, all task additions and flow modifications they imply have already been

enforced.

After this loop has been executed over all cases Cis, the cases VCis found to be valid are

being merged, providing the verified instance subgraph vis; merging concerns the

aggregation of the tasks representing the same activity in the different cases, and the

UPCAST D3.1: Negotiation and Execution Modules v1

39

unification of the corresponding edges. Similarly, when verification of all instance

subgraphs is complete, the verified ones (VIS) are merged providing the final verified

workflow model WMV. In other words, similarly to the decomposition of the initial

workflow model to instance subgraphs and cases, the final WMV is assembled from its

elementary parts, i.e., its cases and verified instance subgraphs, into a unified

specification. Intuitively, in order for the workflow verification to be successful, there

should be at least one verified case vc resulting from the procedure.

The basic scheme presented above has some variants related to the repetitive execution

of certain parts, so that a case, a subgraph, or the model as a whole, to be verified again;

so that to capture potential privacy flaws that the modification may have introduced. For

instance, two new tasks, introduced during verification, may conflict with each other,

which cannot be captured by the initial directives. Hence, repetition of some procedures

is necessary, until the workflow “converges” to a definitive structure.

4.5 Negotiation Protocol

The UPCAST Negotiation Protocol is a set of interactions between a provider and a

consumer that establishes an UPCAST contract based on an ODRL agreement. The

UPCAST negotiation information model is presented in Figure 13.

Figure 13: UPCAST Negotiation Data Model.

Once the provider and the consumer have been matched for negotiation and agreement,

the UPCAST Negotiation Plugin verifies the DPW and consumer’s intentions against the

provider’s constraints, legal constraints, organization-specific policies, pricing, and

environmental impact constraints. If no conflict is identified, an agreement is

automatically reached. Otherwise, the system highlights the conflicts and tries to find an

optimal offer/counter offer, which is then sent back to the consumer. Following this, a

negotiation process is initiated, consisting of a sequence of counter-offers exchanged

between the provider and the consumer. The consumer may choose one of the

alternatives presented by the system, manually edit the terms, or request a new

alternative. This counter-offer can then be accepted or modified by the provider. If the

provider accepts the counter-offer, an agreement is reached, and the system proceeds

to contracting. If not, the provider must present a counter-offer, assuming the role of the

consumer in the previous step. This back-and-forth continues until the provider agrees

with an offer. Ultimately, the provider has the final say on whether the negotiation

proceeds by accepting, rejecting, or sending another counter-offer. Through the

UPCAST D3.1: Negotiation and Execution Modules v1

40

negotiation and contracting plugin UI, the provider defines the negotiation range for each

statement in the resource specification, while the consumer may also fine-tune the DPW

specification to reflect their negotiation preferences (explained in Section 4.5.2). The

case concludes with the generation of machine-readable and natural language contracts

if an agreement is reached. In any case, the negotiation outcome is presented to both

parties.

UPCAST negotiation builds upon IDSA standards; Figure 14 (a) shows the UPCAST

negotiation flowchart, which is compatible with the state machine of the IDSA Contract

Negotiation Protocol represented in Figure 14 (b).

(a) UPCAST Negotiation Flowchart. (b) IDSA Contract Negotiation Protocol State

Machine.

Figure 14: Negotiation Flowchart and State Machine.

4.5.1 Negotiation process

The negotiation process detailed below is fully compatible with the IDSA negotiation

protocol. The following abbreviations are used in the presentation:

– RP: resource provider,

– RC: resource consumer,

– DPW: Data Process Workflow

Preconditions:

UPCAST D3.1: Negotiation and Execution Modules v1

41

RPs have submitted their data source and primary ODRL offers in a data market place.

Description:

1. RC initiates a negotiation through one of the following scenarios:

• Scenario 1: Using goodFlows, after defining a DPW, the consumer can

generate an UPCAST request, which includes an ODRL request based on

internal policies, a resource specification, a natural language part, and

negotiation preferences;

• Scenario 2: The consumer searches the Data Catalog for a resource.

Upon finding a suitable resource, the consumer fetches the resource

specification and its ODRL offer from the Data Catalog. The consumer

then generates an UPCAST request, which includes an ODRL request, a

resource specification, a DPW, a natural language part, and negotiation

preferences;

(The UPCAST request is explained in Section 4.4)

2. Before sending the request to the RP, the RC's request should be examined for

conflicts:

a. Conflicts within the ODRL request and the DPW are detected by Policy

Engine.

b. Conflicts in resource specification and natural language part are found by

Resource Description Conflict Resolution Engine and NLP Conflict

Resolution Engine, respectively.

3. If any conflict is detected, RC may:

a. Revise the request and resend it for conflict checking.

b. Confirm the existing request, despite its conflict(s).

4. RP may:

a. Agree to the UPCAST request, in which case the process continues from

step 9.

b. Release a counteroffer called an UPCAST offer, which includes an ODRL

offer, a resource specification, a DPW pattern, a natural language part,

and their negotiation preferences.

(The UPCAST offer is explained in Section 4.3).

5. If the RP releases an UPCAST offer, the offer should be examined for conflicts:

a. Conflicts in the ODRL offer and DPW pattern are detected by the Policy

Engine.

b. Conflicts in the resource specification and natural language part are

found by the Resource Description Conflict Resolution Engine and the

NLP Conflict Resolution Engine, respectively.

6. If any conflict is detected, the RP may:

a. Revise the offer and resend it for conflict checking.

b. Confirm the existing offer despite its conflicts.

7. The RC may:

a. Accept the offer and send an acceptance message to the RP.

b. Generate a new UPCAST request, in which case the process continues

from step 2.

8. If the RC accepts the offer, the RP may respond with an agreement.

UPCAST D3.1: Negotiation and Execution Modules v1

42

9. RC may verify the agreement.

10. An UPCAST contract is generated, including the final version of the ODRL

agreement, resource specification, DPW, and natural language part. Metadata

such as the start date and the validation period of the contract is also added.

11. RC signs the contract by adding the date and his dpv:DigitalSignature;

12. RP signs the contract by adding the date and his dpv:DigitalSignature;

Postconditions:

The UPCAST contract is finalised.

It should be noted that

– RC can terminate the negotiation at steps 3, 7, and 9.

– RP can terminate the negotiation at steps 4, 6, and 8.

4.5.2 Negotiation Terms and Preferences

In a negotiation process between a data provider and a data consumer for a specific

dataset, both parties typically have preferences and objectives that they aim to achieve.

Negotiation preferences can vary depending on the specific context and requirements

of the dataset involved.

Both providers and consumers may specify their preferences before starting the

negotiation. They define some conditions and also some ranges to specify the upper

and the lower bounds of some variables. They may inform the other party of some or all

their preferences; it depends on the game theory model that is applied for negotiation.

Following are some common negotiation preferences for both the data provider and the

data consumer, along with examples.

Data Provider's Preferences:

1. Fair Compensation/Price: The data provider may seek fair compensation for

providing access to the dataset. This compensation could be monetary or non-

monetary, such as reciprocal access to services. In the case of monetary

compensation, the provider may define a minimum value that he will accept.

Example: The data provider may offer a dataset for a lower fee if the data

consumer requests usage of the dataset for research purposes rather than

general purposes.

Example: The data provider sets a minimum for the price, and if the consumer

makes a request of less than that amount, the provider leaves the negotiation.

2. Data Access Restrictions: The data provider may have preferences regarding

how the dataset can be accessed, used, and shared to protect its property rights

and ensure data security and privacy. Some related ranges are:

• Access control; whether it is full data access, limited data access or

anonymized data access.

• Conditional access; whether it is time-bound access or purpose-

bound access.

• Data usage restriction; it can be single-use, multi-use, or aggregate-

use.

• Privacy and security measures; for example, data masking,

encryption, access logs, and differential privacy.

UPCAST D3.1: Negotiation and Execution Modules v1

43

• Compliance requirements; it can be regularity compliance or audit

rights.

• Monitoring and reporting; for instance, usage reports or breach

notification.

Example: The data provider may require the data consumer to agree to specific

usage restrictions and data protection measures, such as: “Anonymize the data

before sharing to a third-party”, “Do not share attribute X and attribute Y,

simultaneously”, “Use data whose collected date is between X and Y”.

3. Environmental Impact: The data provider may have preferences regarding the

environmental impact of data processing workflows that use their data.

Example: The data provider may require the data processing workflow of a data

consumer to have a carbon consumption under a certain range, but is willing to

negotiate for a higher carbon consumption.

Data Consumer's Preferences:

1. Cost-effectiveness: The data consumer seeks to obtain the dataset at a

reasonable cost or within their budget constraints to ensure the overall viability

of their project or business objectives.

Example: the data consumer may specify the maximum value that he will accept

to pay for data.

2. Data Relevance and Quality: The data consumer's primary preference may be to

access a dataset that meets their specific needs and requirements. They

prioritize data relevance, accuracy, and reliability.

Example: the data consumer may require a specific collection of the attributes

such as, daily step counts, heart rate, calories burned, and workout duration in

Nissatech pilot.

3. Data Access and Usage Rights: The data consumer may also have preferences

regarding the terms of data access, usage, and redistribution rights to ensure

flexibility and compatibility with their intended use cases.

Example: A research institution negotiating for access to scientific data may

require non-exclusive usage rights to analyze and publish research findings

derived from the dataset. The third parties to which these research findings will

be shared are usually determined post-negotiation at the consumer’s discretion.

These third parties could be other research organizations or different entities,

depending on the consumer’s preference.

4. Timeliness and Availability: Timely access to the dataset can be crucial for the

data consumer's project timelines and deliverables. They prioritize negotiating

agreements that ensure prompt access to the dataset.

Example: The data consumer may prioritize agreements that guarantee

immediate data access and updates.

These negotiation preferences serve as guiding principles for both the data provider and

the data consumer during contract negotiations, helping them reach mutually beneficial

agreements that address their respective interests and objectives.

Examples of Specific Negotiations

UPCAST D3.1: Negotiation and Execution Modules v1

44

Provider-Defined:

– The producer decides to provide only anonymized data access to ensure

privacy.

– The producer allows access to the data for six months only.

– The producer mandates that all sensitive data fields must be masked before

sharing.

– The producer requires the consumer to comply with GDPR regulations.

Consumer-Defined:

– The consumer specifies that they need the data for developing a new machine

learning model.

– The consumer agrees to pay a specified fee for data access.

– The consumer proposes that any new datasets derived from the original data

will be shared back with the producer.

– The consumer suggests a revenue-sharing model where the producer receives

a percentage of profits generated from the data usage.

4.5.3 Negotiation sequence diagrams

This section presents the sequence diagrams for the negotiation process.

First, the negotiation process in examined, where resource providers and resource

consumers act as clients, while negotiations are managed by a central negotiation and

contracting server and conflict resolution is handled by the Conflict Resolution Engine,

which consists of three components: the Policy Engine, the NLP Conflict Resolution

Engine, and the Resource Description Conflict Resolution Engine. Figure 15 illustrates

the negotiation sequence diagram. As depicted, consumers always initiate a negotiation

by sending a request. Resource providers then have the option to agree to the request,

send back a counteroffer, or terminate the negotiation. If a provider responds to a

consumer’s request with an offer, the consumer can choose to accept the offer, send a

new request, or terminate the entire negotiation. Ultimately, when an agreement is

reached, a contract is generated and sent to the parties for their signatures.

Next, the negotiation process from the perspective of the negotiation API is illustrated.

In this scenario, both resource providers and resource consumers utilize the API to

initiate, manage, finalize, or terminate negotiations. The API is responsible for tracking

all active negotiations, allowing both parties to access up-to-date information.

Additionally, the API handles conflict resolution and oversees the contracting process,

ensuring seamless and efficient negotiation /management. Figure 16 shows the API-

based version of the negotiation sequence diagram.

UPCAST D3.1: Negotiation and Execution Modules v1

45

UPCAST D3.1: Negotiation and Execution Modules v1

46

Figure 15: Simplified Sequence Diagram.

UPCAST D3.1: Negotiation and Execution Modules v1

47

Figure 16: Negotiation Sequence Diagram.

4.6 Contract Data Model

Upcast contract is the result of a successful negotiation between a provider and a

consumer when they reach a complete agreement. It contains several main parts. Firstly,

an ODRL Agreement makes the foundation of the contract. Then, an UPCAST contract

utilises the IDSA contract schema. In addition, it requires DPW to specify contract-related

activities and sequences and Natural Language Part. Eventually, some metadata is

needed to finalise the contract; for example, a contract must contain signatures of

participants, related dates, etc. Figure 17 shows the information model of the UPCAST

contract.

UPCAST D3.1: Negotiation and Execution Modules v1

48

Figure 17: UPCAST Contract Data Model.

4.6.1 ODRL Agreement

An Agreement is a concrete policy associated with a specific dataset that has been

accepted by both the provider and consumer parties. An Agreement is a result of a

negotiation and is associated with exactly one Dataset.

An ODRL Agreement Policy must contain at least one Permission or Prohibition rule, a

party with assigner function, and a party with assignee function (in the same permission

or prohibition). The Agreement Policy will grant the terms of the policy from the assigner

to the assignee. It must also contain a target property. The complete ODRL Agreement

is sent through a Contract Agreement Message by a provider when it agrees to a

contract.

sent by Data Provider

format ODRL, IDSA

properties Odrl:Rule Permission with none, one, or more duties as the

property of the Permission.

Prohibition with none, one, or more remedies as the

property of the Prohibition.

odrl:uid It identifies the policy.

odrl:Party

idsa:Participa

nts

It defines assignee and assigner; the contents of these

properties are a unique identifier of

the Agreement parties. These identifiers are not

necessarily the same as the identifiers of

the Parties negotiating the contract.

https://github.com/International-Data-Spaces-Association/ids-specification/blob/main/model/terminology.md#agreement

UPCAST D3.1: Negotiation and Execution Modules v1

49

odrl:Asset It defines as target; None of its Rules, however, must

have any odrl:target attributes to prevent

inconsistencies with the ODRL inferencing rules for

compact policies.

[odrl:Constrai

nt]

It defines any constraint on the rule based on the

usage policies. Logical constraint can be also included.

[odrl:Profile] It defines an ODRL rule that this agreement complies

with.

The ODRL agreement may also have none, one, or many profile values to identify the

ODRL Profile that this Agreement conforms to. It may have none, one, or many

inheritFrom values. It may have none or one conflict values (of type ConflictTerm) for

Conflict Strategy Preferences indicating how to handle Policy conflicts.

An ODRL agreement may also declare properties which are shared and common to all

its Rules. Specifically, action properties, sub-properties of relation (such as target), and

sub-properties of function (such as assigner and assignee).

An ODRL agreement must either:

– Only use terms defined in the ODRL Core Vocabulary [odrl-vocab], or

– Use an ODRL Profile that declares the supported vocabulary used by expressions

in the Policy.

4.6.2 Data Processing Workflow

An ODRL Agreement does not contain the sequence and the order of the actions; thus,

DPW is needed to specify it. Each UPCAST contract contains a specific DPW in which

the exact sequence of the actions in ODRL agreement is defined.

4.6.3 Dataset

Based on the UPCAST contract, a resource specification is created and the resource is

annotated with basic metadata, using UPCAST vocabulary and domain-specific

vocabularies. Pricing and environmental issue related to the contract is identified here.

4.6.4 Natural Language component

Users must be able to generate contracts that contain and use boilerplate text whenever

the contract contains clauses that can only be expressed through natural language.

Therefore, UPCAST Negotiation and Contracting plugin has been developed to

automatically generate contracts in both machine-readable formats, under standards

such as the Open Digital Rights Language (ODRL), and natural language using boilerplate

text or even Large Language Models (LLMs).

4.6.5 MetaData

An UPCAST Contract must contain timestamps that define contract sign date-time,

contract start date-time, and contract end date-time. The agreed version of an UPCAST

Contract will also be signed by both the provider and the consumer; thus, the contract

must include a signature. A DPV Digital Signature which is an expression and

authentication of identity through digital information containing cryptographic

signatures will be used for this purpose.

https://www.w3.org/TR/odrl-model/#composition-compact
https://www.w3.org/TR/odrl-model/#composition-compact
https://www.w3.org/TR/odrl-model/#bib-odrl-vocab

UPCAST D3.1: Negotiation and Execution Modules v1

50

4.6.6 Human Readable Contract Terms

The UPCAST negotiation and contracting plugin generates outcomes that include both

machine-readable and human-readable contracts when an agreement is reached

between the provider and consumer. The human-readable component of these contracts

is essential for ensuring that all parties fully understand the terms and conditions,

facilitating transparency and reducing the likelihood of disputes. This component

provides a clear, concise summary of the agreement in natural language, making it

accessible to individuals regardless of their technical expertise.

Leveraging Large Language Models (LLMs) significantly enhances the creation of

human-readable contract terms. LLMs can automatically generate accurate and

contextually relevant summaries of complex contractual agreements. By interpreting

and translating the technical and legal jargon into plain language, LLMs ensure that every

stakeholder, from legal professionals to non-specialists, can easily comprehend the

terms. This capability not only streamlines the negotiation process but also promotes

fairness and clarity, ensuring that all parties have a shared understanding of the

agreement.

4.7 Legal Terms

The following legal terms are critical for the Negotiation and Contracting plugin in

UPCAST.

Data Ownership and Intellectual Property Rights

– Clearly define the ownership of data and any intellectual property rights

associated with the data and derived works; idsa:Participants, odrl:Party in ODRL

Agreement, and dpv:DigitalSignature.

– Specify conditions under which data can be shared, licensed, or sold, including

any rights to modifications or improvements made to the data by the consumer;

odrl:Constraints and odrl:duty in ODRL Agreement.

Permissions and Restrictions

– Permissions: Outline specific permissions granted to the data consumer, such

as access rights, usage rights, and sharing rights; odrl:Permission in ODRL

Agreement.

– Prohibitions: Define explicit prohibitions, such as restrictions on data usage,

limitations on further dissemination, and any activities that are expressly

forbidden; odrl:Prohibition in ODRL Agreement.

– Obligations: Specify obligations imposed on the data consumer, such as

requirements to maintain data confidentiality, report data usage, and comply with

relevant laws and regulations; odrl:Duty in ODRL Agreement.

Data Processing Workflow

– Description: Detailed steps of how the data will be collected, processed, stored,

and used.

– Technical Requirements: Specifications that must be followed during data

processing.

Privacy and Data Protection

UPCAST D3.1: Negotiation and Execution Modules v1

51

– Ensure compliance with data protection laws such as GDPR (General Data

Protection Regulation).

– Define the measures to be taken to protect personal data, including

anonymization, encryption, and access controls; odrl:Action in ODRL Agreement.

– Include clauses that specify the data producer’s and consumer’s responsibilities

in protecting personal data and handling data breaches; odrl:duty in ODRL

Agreement.

Data Usage and Processing

– Detail the specific purposes for which the data can be used and any processing

activities that are permitted; odrl:Constraint in ODRL Agreement.

– Include conditions for data minimization, ensuring that only the necessary data

is used for the specified purposes.

Liability and Indemnification

– Establish the liabilities of each party in case of data misuse, breaches, or non-

compliance with the contract terms; odrl:remedy and odrl:consequences in ODRL

Agreement.

Compliance and Auditing

– Outline the requirements for compliance with applicable laws, industry

standards, and best practices.

– Include provisions for regular audits to ensure adherence to the terms of the

contract and the effectiveness of data protection measures.

Dispute Resolution

– Specify the mechanisms for resolving disputes that may arise from the data

sharing agreement, such as mediation, arbitration, or litigation.

– Include the jurisdiction and governing law that will apply to the contract.

Termination and Exit Strategy

– Specify the contract validity duration by start time and end time/duration;

time:DateTimeDescription.

– Define the conditions under which the contract can be terminated by either party.

– Include provisions for the return or destruction of data upon termination of the

agreement.

Natural Language Component

– Define the Natural Language representation of the contract align with the legal

terms; for example:

o "The Data Producer retains all rights, title, and interest in and to the data

provided under this agreement. The Data Consumer is granted a non-

exclusive, non-transferable license to use the data solely for the purposes

specified herein."

o "The Data Consumer agrees to process personal data in compliance with

GDPR and to implement appropriate technical and organizational

measures to protect the data against unauthorised access, disclosure,

alteration, or destruction."

UPCAST D3.1: Negotiation and Execution Modules v1

52

o "The Data Consumer is permitted to use the data for research and

analysis purposes only. Any further distribution or commercial use of the

data is strictly prohibited unless explicitly authorised by the Data

Producer."

o "The Data Consumer shall be liable for any damages resulting from the

misuse of the data and agrees to indemnify the Data Producer against

any claims, damages, or liabilities arising from such misuse."

o "This agreement may be terminated by either party with 30 days written

notice. Upon termination, the Data Consumer shall cease all use of the

data and, at the Data Producer’s discretion, either return or destroy all

copies of the data."

By incorporating these legal terms and examples into the negotiation and contracting

process, UPCAST ensures that data sharing is conducted in a secure, compliant, and

mutually beneficial manner.

UPCAST D3.1: Negotiation and Execution Modules v1

53

5 Data Exchange and Execution
This chapter gives the details of the Data Exchange and the dataset execution functions

of the UPCAST platform. Data Exchange relates to functions for the secure transfer of

the dataset from the provider to the consumer. These functions are implemented by the

Secure Data Delivery plugin that is detailed in section 5.1. Section 5.2 gives the details

of the execution environments that can be used in UPCAST for the execution of the

project’s pilots. As all pilots plan to use the Nextflow system for their workflows, an

overview of Nextflow is given in section 5.2.2. Finally, section 5.2.3 gives an overview of

SIMPIPE, which is an alternative execution environment that may be used for the

execution of consumer workflows.

5.1 Data Exchange

Data exchange includes all tasks for the secure transfer of a dataset from the provider

to the consumer for executing the Data Processing Workflow. These functions are

supported by the Secure Data Delivery plugin that is shown in Figure 1.

The Safe, Traceable, and Secure Exchange of Data functions of the plugin allow secure

data delivery within secure execution environments. The capabilities of the plugin should

allow to address two main use cases:

• One data provider transferring data to only one data consumer

• One data provider transferring data to multiple data consumers.

To meet the requirements for secure data exchange, the capabilities of the plugin will be

the following:

• Enforce safe and secure transfer and delivery of data and resources.

• Monitor performance, execution and compliance of data transfer using the

plugin.

• Practical and scalable solution, handling large volumes of data.

• Minimize energy consumption of data transfer.

• Deployable in multiple data platforms and marketplaces, compliant with Gaia-X8

specifications.

The approach chosen by Dawex to provide these capabilities relies on principles for an

open architecture with trust as its focal point, able to interact both with other UPCAST

plugins, and with other existing data connectors:

• Allow data provider to perform data exchange with a trusted Safe data product

Transfer Plugin,

• Interconnect distributed data connectors to perform data exchange under the

supervision of a data space orchestrator.

• Enable organizations to design and manage data products from multiple data

source in their own environment,

8 https://gaia-x.eu/

https://docs.google.com/document/d/1s-7-KZdOQqvMY4pzPR1_7DKWnfoszTs05z-obkgmSWs/edit#heading=h.6304k8o9ua0c
https://docs.google.com/document/d/1s-7-KZdOQqvMY4pzPR1_7DKWnfoszTs05z-obkgmSWs/edit#heading=h.6304k8o9ua0c
https://gaia-x.eu/

UPCAST D3.1: Negotiation and Execution Modules v1

54

• Facilitate deployment of the plugin with cloud agnostic and low consumption

solution,

• Provide advanced tracing and telemetry metrics to analyse performance,

execution and compliance of Data Transfer.

5.1.1 Data exchange scenarios

This section gives an overview of different data exchange scenarios, namely, one-to-one

and one-to-many.

One to one data exchange

In this scenario, depicted in Figure 18, the Secure Data Delivery Plugin is working as a

request/response proxy to exchange data between a data provider and a data consumer.

Once terms are negotiated and a contract is established, the data consumer will be

allowed to request data product transfer securely to a trusted data destination or

consume the data product from within application execution directly.

Figure 18: One to one data exchange scenario.

One to many data exchange

In this scenario, depicted in Figure 19, the Secure Data Delivery plugin functions as a

broadcast proxy to exchange data from a data provider to multiple data consumers.

Based on a data product delivered by the data provider, the plugin will automatically

transfer this data product to all active subscribers based on their access and usage

rights that are specified in the negotiated contract. The data consumer will negotiate a

data contract before subscribing to the data product delivery process.

UPCAST D3.1: Negotiation and Execution Modules v1

55

Figure 19: One to many data exchange scenario.

5.1.2 Capabilities

The Secure Data Delivery plugin capabilities are shown in Table 2.

Table 2: Secure Data Delivery capabilities.

Monetization Data Product Exchange

Management

Mediation routing

• Data product listing

• Realtime data transfer

consumption

• Data product

versioning and

deprecation strategy

• Healthcheck

monitoring

• Data transfer routing

• Policy and restriction

enforcement

Integration Observability Security

• Configure and manage

Data Source

• Support standard

transfer protocol

• Provide access to

technical

documentation

• Aggregate logs and

metrics

• Reliability, availability,

performance

• Alert triggering

• Traffic analysis to

detect suspicious

activity

• Restrict data product

access

• Enable authentication

standards

• Automatically refresh

authentication token

• Key access

management

5.1.3 Architecture

The Secure Data Delivery plugin architecture approach is driven by the capabilities

presented above and is focused to meet:

Performance and Consumption

• Microservices architecture to improve scalability and reliability,

• Minimal footprint of microservices consumption (memory, CPU),

UPCAST D3.1: Negotiation and Execution Modules v1

56

• Enable access to advanced tracing and telemetry metrics without affecting data

transfer performance.

Interoperability

• Allow interconnection with UPCAST plugins by API or Kafka client,

• Allow synchronization with Data Marketplaces by API,

• Provide public documentation for technical integration.

Figure 20 shows the backend services architecture of the Secure Data Delivery plugin.

Backend services are based on multiple micro services: Manager API, Metrics API,

Gateway API. Each service is developed following domain driven architecture to isolate

responsibilities during Data Transfer.

Manager API: Manages Data Source and data product configuration. The Manager will

match standard security protocols to access Data Source and provide an authentication

process for data product accessibility. It should also provide an interface for data

product listing.

Metrics API: This service is dedicated to observability functions. Metrics are collected

with the Metrics Collector and stored in a Time Series Database. The service exposes

API and Kafka client to allow metrics requesting such as: execution time, transfer status,

latency distinguished by contract, consumer, data product.

Gateway API: The Gateway isolates an API dedicated to Data Transfer routing, and

requests routing enforcement, which is essential for respecting Data Policies and

protecting data product access. Isolation focuses also on performance issues as Data

Transfer latency should not be impacted by tasks from another domain. This service is

highly scalable to handle large volumes of data.

Figure 20: Safe data delivery Plugin Architecture.

Frontend: The plugin could expose a web interface to display management functions

and metrics visualization. Based on the plugin capabilities, each user can create its own

frontend, serving its needs. Developing a frontend interface for this plugin should be

considered within the scope of the monitoring plugin as an option.

UPCAST D3.1: Negotiation and Execution Modules v1

57

The benefits of the plugin Architecture are

• Horizontal and vertical scalability with microservices,

• Storage oriented for telemetry analytics,

• Easy integration with tiers party applications (such as other UPCAST plugins),

• Exposed API for efficient and secure interconnection,

• Secure by design: single public entry point with the ingress,

• Decorelate frontend rendering for improved performance,

• Simple and reliable for fast learning, easy maintenance and low resource

consumption,

• Virtualizable (docker) for cloud agnostic deployment.

5.1.4 Plugin interoperability

As detailed in the previous section, the Secure Data Delivery plugin will expose APIs to

access resources, allowing easy integration with other plugins, remotely or locally.

Additional plugins can also be integrated inside the Secure Data Delivery Plugin

architecture.

To integrate with the monitoring plugin, the Secure Data Transfer plugin will send Kafka

messages and respect a strong naming convention as detailed in Chapter 6.

5.2 UPCAST Execution

This section gives an overview of the execution environments that may be used in

UPCAST for the execution of a Data Processing Workflow. It first presents the execution

environments of the project pilots and then gives an overview of the Nextflow

management system and the SIMPIPE execution environment.

5.2.1 Pilot Execution Environments

This section gives the details of the execution environments that may be used in

UPCAST for executing the DPWs. UPCAST pilots use their own infrastructure and

execution environments for processing datasets. The resulting diversity of execution

infrastructures is seamlessly integrated to the overall UPCAST architecture and is

represented in the UPCAST Architecture of Figure 1 as a single component, the Workflow

Execution Environment. Moreover, the UPCAST Architecture remains open for the choice

of the execution environment that may be used for processing the DPW. SIMPIPE, an

alternative execution environment that is presented in section 5.2.3, may also be

seamlessly integrated in the UPCAST architecture. For all pilots, workflow modelling is

done with the use of ICTabovo goodFlows modeler while data exchange is performed

with the Dawex marketplace platform.

5.2.1.1 Biomedical and Genomic Data Sharing

The execution environment of NHRF is designed for biomedical and Next-Generation

Sequencing (NGS) data analysis. It incorporates Nextflow, a bioinformatics-specialized

workflow engine for workflow orchestration and the AWS Batch service for compute

resource management. Nextflow coordinates various bioinformatics tools essential for

processing NGS data, ensuring reproducibility and scalability of workflows. AWS Batch

manages the dynamic provisioning of computational resources, including EC2 instances

tailored for high-throughput computing tasks. The system thus handles large input

UPCAST D3.1: Negotiation and Execution Modules v1

58

datasets and reference files, typical in NGS analyses, by utilizing AWS S3 for storage and

transfer, ensuring data accessibility and durability. This architecture supports the

efficient execution of complex bioinformatics workflows, facilitating comprehensive

analysis of extensive genomic datasets while maintaining cost-effectiveness and

scalability within the cloud infrastructure. In case of less computational intensive tasks,

Nextflow can be easily redirected to utilize the local infrastructure within NHRF premises

or academic cloud infrastructure.

5.2.1.2 Public Administration

In the public administration pilot of MDAT, public organizations, corporations, and

citizens can provide their datasets under an open license. These datasets are offered for

exchange through an open-source data marketplace being developed for Thessaloniki’s

regional authorities. Given the open nature of the datasets, execution is not typically

monitored, and providers are not involved in the processing workflow. However, third

parties might want to offer Nextflow execution services to support scenarios involving

calculations with open datasets sourced from various providers.

A special case that might require an execution environment is the Hellenic Statistical

Authority. This public organization restricts access to available datasets due to the

potential inclusion of personal identification information. When a researcher requests a

dataset containing only anonymized information, the statistical authority must first

anonymize and then materialize the federated data into a dataset using the authority’s

processing resources.

Additionally, a more general requirement for execution environment support is for the

marketplace itself to provide sample workflows for consumers. These workflows would

include the required datasets and processing pipeline scripts as a bundle, promoting

engagement with the platform.

5.2.1.3 Health and Fitness

The deployment and execution of the Nissatech pilot is based on the infrastructure used

in the commercial system Zona Zdravlja9. The data is collected from wearable devices

used by trainees and stored in a MongoDB10 database. Various types of reports can be

generated, providing added value for the fitness coaches who are monitoring the

physical activity process of a particular trainee. The collected data will be shared in the

Data Marketplace and valuated by the Data Valuation plugin, providing information about

the preferences for data from specific types of physical activities. Data will not be shared

by individual trainees, but by the Zona Zdravlja Platform provider. Individual trainees will

be informed about the data valuation process and encouraged to generate data with

higher valuation.

Dawex will be used for sharing the data. Types and numbers of trainees depend on the

characteristics of the Dawex data sharing mechanism.

9 https://www.zonazdravlja.com

10 https://www.mongodb.com/

https://www.zonazdravlja.com/
https://www.mongodb.com/

UPCAST D3.1: Negotiation and Execution Modules v1

59

Quantity (how much can be published) depends on the characteristics of the Data

Marketplace.

5.2.1.4 Digital Marketing 1

The deployment and execution for the generation of the marketing data monetisation

model of JOT is based on Google Cloud infrastructure. Fully managed by Compute

Engine, the pilot is hosted in a Virtual Machine (e2-custom-2-6144 type with x86-64

architecture) with a public IP and SQL Server Express installed to manage the user

requests.

As presented in [2], flow orchestration implies the generation of the user request thanks

to the development of .NET Blazor Server web app and the publication by means of

Microsoft Internet Information Services (IIS).

For this purpose, the generation of the use requested data set is enabled by a ODBC

connection to BigQuery and embedded through a sequential storage procedure. First,

the data sample containing 100 initial rows, data model and its related information

(metadata, description and so on) is obtained.

Figure 21 Table containing the user request for data set generation.

Then, the following steps are sequentially orchestrated to create the final offer to the

user. These involve both the pricing and the final negotiation and agreement. Finally,

when the agreement is signed, the full data set will be generated and shared with the

user with a link to a Google Cloud Storage bucket (as indicated in Figure 22 – red arrow)

and related reporting services are executed.

Figure 22 User interface showing the status of the user request.

5.2.1.5 Digital Marketing 2

The deployment and execution of the marketing data monetization model for CACTUS

will be managed as follows. Google Cloud APIs will be utilized to gather all necessary

data, ensuring a comprehensive and efficient data collection process. This data will then

UPCAST D3.1: Negotiation and Execution Modules v1

60

be imported into the CACTUS custom-made CRM, designed to meet CACTUS specific

needs and enhance data management capabilities. The CACTUS CRM is hosted on a

MySQL Server provided by Digital Ocean11, leveraging its robust infrastructure for reliable

performance and scalability. This approach not only streamlines data collection and

management but also integrates seamlessly with existing systems, thereby optimizing

the overall data monetization strategy.

5.2.2 Nextflow

This section gives an overview of Nextflow12, which is a workflow management system

designed for the development and execution of computational pipelines. Nextflow

facilitates the integration and orchestration of various tools and scripts, enabling

reproducible and scalable analysis. Workflows are composed of processes, each

encapsulating a computational task with defined inputs, outputs, and scripts. Channels

connect processes, enabling data flow between them. They can be used to define

complex data dependencies and parallelism.

Nextflow supports Docker13, Singularity14, and other container technologies, ensuring

that pipelines can run in isolated environments with all dependencies. It also supports

cloud integration and can seamlessly run on various cloud platforms (AWS, Google

Cloud, Azure), with leveraging of their auto-scaling capabilities. Besides cloud, it can run

on high-performance computing (HPC) clusters using traditional schedulers like

SLURM15.

Nextflow uses a domain-specific language (DSL) based on Groovy 16 to define

computational workflows. Groovy is a powerful programming language for the Java

virtual machine. The Nextflow syntax has been specialized to ease the writing of

computational pipelines in a declarative manner. The recent DSL2 introduces modular

pipeline development, enabling reusability and better organization. Processes are the

fundamental units in a Nextflow pipeline, defining tasks with inputs, outputs, and a script

to execute:

process myProcess {

 input:

 path 'input.txt'

 output:

 path 'output.txt'

11 https://www.digitalocean.com

12 https://nextflow.io/
13 https://www.docker.com

14 https://sylabs.io

15 https://slurm.schedmd.com/documentation.html

16 https://groovy-lang.org

https://www.digitalocean.com/
https://nextflow.io/
https://www.docker.com/
https://sylabs.io/
https://slurm.schedmd.com/documentation.html
https://groovy-lang.org/

UPCAST D3.1: Negotiation and Execution Modules v1

61

 script:

 """

 myCommand input.txt > output.txt

 """

}

If a process is containerized, a “container” parameter must be added in the process:

process myProcess {

 container 'myDockerImage:latest'

 ...

}

Channels connect processes by transferring data between them, enabling parallel

execution and complex data dependency management. They support various types of

data, including files, values, and collections. Channels can be created and manipulated

using built-in methods:

Channel.fromPath('data/*.txt').set { inputFiles }

5.2.2.1 Nextflow plugins

Nextflow supports plugins that extend its capabilities. The Kafka17 plugin provides an

extension to implement built-in support for Kafka systems and manipulation in Nextflow

scripts. It provides the ability to create a Nextflow channel to listening from topics as

send message.

A snippet must be added to a nextflow.config file:

plugins {

 id 'nf-kafa@0.0.1'

}

5.2.2.2 Nextflow Executors

In the Nextflow framework architecture, the executor is the component that determines

the system where a pipeline process is run and supervises its execution. The executor

provides an abstraction between the pipeline processes and the underlying execution

system. This allows to write the pipeline functional logic independently from the actual

processing platform. In other words, the pipeline script can be written once and have it

running on a computer, a cluster resource manager, or the cloud, simply by changing the

executor definition in the Nextflow configuration file. For instance, to execute the

pipeline script with the AWS Batch service, the following snippets may be used:

enables nf-amazon plugin

plugins {

 id 'nf-amazon'

}

17 https://kafka.apache.org

https://kafka.apache.org/

UPCAST D3.1: Negotiation and Execution Modules v1

62

defines as executor an existing AWS Batch queue

process {

 executor = 'awsbatch'

 queue = 'aws - queue1'

}

5.2.3 SIMPIPE Execution Environment

This section gives an overview of SIMPIPE18, which is a software for executing data

pipelines in a secure sandbox environment. The environment is a Kubernetes19 cluster

in which SIMPIPE leverages Argo Workflows20 to orchestrate pipeline workflows. The

pipeline workflows are defined using Argo Workflows YAML21 format, in which each

pipeline step references a containerized application image. In UPCAST, SIMPIPE will be

used to automate pipelines for data sharing and processing agreements.

18 https://www.sintef.no/en/software/sim-pipe

19 https://kubernetes.io

20 https://argoproj.github.io/workflows

21 https://yaml.org

https://www.sintef.no/en/software/sim-pipe
https://kubernetes.io/
https://argoproj.github.io/workflows
https://yaml.org/

UPCAST D3.1: Negotiation and Execution Modules v1

63

Figure 23: SIMPIPE Architecture.

Figure 23 22 shows the architecture of SIMPIPE, where the controller backend is a

stateless NodeJS environment which provides a GraphQL API leveraged by the frontend

graphical user interface. Furthermore, the API can be used to integrate SIMPIPE into

other software. The SIMPIPE controller consists of subcontrollers responsible for talking

to Kubernetes, Argo Workflows, Prometheus and Minio. Argo Workflows is responsible

for assigning pipelines (also known as workflows) to the Kubernetes cluster. The

pipeline is defined using a declarative language written in YAML file format. Argo

Workflows allow the user to specify the pipeline tasks and dependencies and supports

complex job orchestration using Directed Acyclic Graphs (DAG). Tasks can be run in

parallel, in sequence, or based on conditions. The Kubernetes controller is used to

manage projects and assign workflows. Prometheus is used for storing and querying

metrics such as resource consumption from the execution of workflows, whereas Minio

22 https://datacloudproject.eu/, Deliverable D3.4, Figure 9.

https://datacloudproject.eu/

UPCAST D3.1: Negotiation and Execution Modules v1

64

is used as an object storage. The Minio controller manages workflow artifacts and can

be used to upload files that in turn can be referenced and used as input files for data

pipelines.

When a data pipeline is defined as an Argo Workflow, with each of the steps in the

workflow having their own containerized image, the pipeline can be uploaded as a

project to SIMPIPE. Executions of the pipeline can be run by creating a dry run of the

pipeline. Input parameters and input data can be customized when creating a new dry

run. It is important to note that the containerized images must be made available for the

pipeline to run successfully. Images from local or public registries can be referenced, or

private image repositories can be used. If private image registries are used, a registry

secret can be added to the workflow in order to successfully authenticate against the

private image repository.

SIMPIPE requires a Linux-based operating system because it depends on Kubernetes

which in turn relies on a Linux kernel to isolate resources and processes. SIMPIPE is

easiest installable on macOS but can be installed on any Linux-based operating system

including Windows Subsystem for Linux (WSL).

UPCAST D3.1: Negotiation and Execution Modules v1

65

6 Monitoring
This chapter presents the monitoring functions of the UPCAST platform. UPCAST

monitoring has two parts: (a) Execution (or runtime) monitoring that is used by the

dataset provider to monitor the execution of a dataset by the consumer following the

agreed workflow and contract between the two, and (b) plugin monitoring that allows

providers to have an overview of the actions taken by the various plugins during dataset

annotation, pricing, negotiation, etc.

Execution monitoring is supported by the monitoring plugin. The interface of the plugin

and the means of streaming monitoring events are presented in section 6.1, whereas

monitoring of UPCAST plugins is presented in section 6.2.

6.1 Execution Monitoring

This section presents the execution monitoring plugin of UPCAST, which is responsible

for monitoring the execution of a dataset. Dataset execution takes place in a control

manner and under the terms of a contract that has been agreed and signed between the

provider and the consumer. Execution monitoring is used for two reasons: (a)

presentation of execution related data to the dataset provider along with relevant

statistics and analytics through the Dashboard, and (b) verifying the compliance of the

dataset execution with the terms of the contract that has been agreed between the

dataset provider and the consumer by the compliance plugin. The following sections

give details for the monitoring process and the metrics that are used by it.

6.1.1 Monitoring Process

The UPCAST platform includes functionalities for monitoring the execution of datasets

for maintaining a record of the execution for the dataset provider and also checking the

compliance of the execution with the agreed workflow. The monitoring process is

triggered by the start of the dataset execution and lasts until its completion. During the

process, monitoring events are collected from the pilots’ execution environment, they

are logged, analyzed and presented to the dataset provider.

The streaming of monitoring events is implemented by the use of standard streaming

platforms. In UPCAST Apache Kafka23 will be used for this purpose. Apache Kafka is a

widely used, distributed, highly scalable, elastic, fault-tolerant, and secure event

streaming platform that implements the publish-subscribe model for streaming

messages between publishers of messages (dataset consumers in the case of UPCAST)

and subscribers to messages (dataset providers in the case of UPCAST).

Messages are communicated through abstractions that are called topics, which are

collections of messages. Each topic has a name that is unique across the entire Kafka

cluster. Messages are sent to and read from specific topics. Producers of messages

(UPCAST dataset consumers) send monitoring events to a topic, whereas consumer of

messages (UPCAST dataset providers) read those events from a topic. A given topic

may have several producers and several consumers. Several publishers can publish

23 https://kafka.apache.org/

https://kafka.apache.org/

UPCAST D3.1: Negotiation and Execution Modules v1

66

messages concurrently and several consumers may consume messages concurrently.

The consumption of a message by concurrent consumers depends on if these

consumers belong to the same consumer group. Consumer groups are collections of

consumers. All consumers in a consumer group share the messages of a topic, which

means that each message will be read by exactly one consumer. Consumers in different

groups consume the same topic data, which means that a message will be consumer

multiple times by consumers that belong to different groups. This model is very versatile

and allows for a multitude of patterns for the consumption and processing of the

streamed messages,

Topics are organized into partitions, which can be processed in parallel by multiple

consumers in a consumer group. Kafka guarantees sequencing of messages only within

a partition and not across partitions. This guarantee has strong implications on the

structure of topics in partitions, and dents on the application requirements. In the case

of UPCAST exactly because sequencing of messages is a strong requirement as it is

important for the subsequent compliance process, each topic must be organized as a

single partition.

Topics have names, which are unique for the Kafka cluster. Since in UPCAST several

dataset executions may take place, a strong naming convention for the names of topics

must be implemented. Therefore, topics will be named as

UPCAST-<contract-id>-<execution id>

where

1. Contract-id is the unique contract identifier under which this execution takes

place. The contract with contract-id identifies the producer, the consumer, the

dataset and the workflow that will be executed on it.

2. execution id is the unique identifier of the execution for the particular dataset,

assuming that each dataset consumer assigns a unique id to each such

execution for a given contract.

Kafka topics will be created by UPCAST consumers by using code like the following.

from kafka.admin import KafkaAdminClient, NewTopic

topic_name = ...

topic_list = [NewTopic(name=topic_name, num_partitions=1,

replication_factor=1))]

admin_client.create_topics(new_topics=topic_list, validate_only=False)

Once a topic has been created, it can be used for sending monitoring data between

UPCAST consumers and providers. Sending a message to a topic can be done with code

like the following

from kafka import KafkaProducer

client = KafkaProducer(bootstrap_servers=[IP_addr]:9092’])

topic_name = ...

event = ...

f = client.send(topic_name, event)

UPCAST D3.1: Negotiation and Execution Modules v1

67

The monitoring events are JSON objects and have the following structure

{

 source: [source component, type: string]

 timestamp: [timestamp of event at source, type: datetime]

 metric: [name of the metric monitored, type: string]

 value: [value of the metric, type: string]

 result: [result of the metric, type: object]

 log: [log string, type: string]

}

The semantics of the JSON fields are as follows:

• source: the name of the source component that emits the JSON object. Each

component that implements the execution flow has a unique name. The name of

the source is used mainly for statistical purposes.

• timestamp: the timestamp of the creation of the JSON object.

• metric: the name of the metric that is reported, e.g. action-start (section 6.1.2).

• value: the value of the metric that is reported, e.g., the name of the action that is

started.

• result: any result the metric may have produced. Results are application specific

objects that are produced as a result of the completion of an action. Typically,

they are integer values with 0 indicating normal completion of execution and non-

zero indicating completion that resulted in an error. The result of an action may

be used for making decisions for following different branches of the workflow or

handling errors that may have resulted from the execution of an action. The result

filed has meaning for action-end metrics, for the rest its value is None.

• log: log message that contains details of the monitored metric.

Topics are discovered by the monitoring plugin, by continuously polling the Kafka cluster.

When a new topic is detected the monitoring plugin creates a new Kafka consumer to

read messages from this topic.

Messages that are read by the Kafka consumers are sent to the compliance plugin to

check compliance of the execution and are also sent to the UPCAST provider dashboard

for monitoring the progress of the execution. When dataset processing ends, a message

is sent to the dashboard, to update the state of the execution for running to terminated,

and the Kafka consumer terminates. The Kafka topic persists after termination of the

execution for providing a record of it for further analysis.

6.1.2 Monitoring metrics

This section presents the monitoring metrics that will be used in UPCAST. Monitoring

metrics are the entities that are emitted by an UPCAST consumer during dataset

execution and are streamed to the UPCAST provider. The monitoring metrics are

classified in two categories, management and execution.

The management monitoring metrics are the following:

Name of

metric

Meaning Value Emission instance

UPCAST D3.1: Negotiation and Execution Modules v1

68

start Start of

processing

None Before start of dataset processing

stop End of

processing

None After completion of dataset

processing

suspend Suspension of

processing

None After dataset processing suspension

resume Resumption of

processing

None Before dataset processing resumption

The action monitoring metrics are the following:

Name of

metric

Meaning Value Emission instance

action-start Start of

processing

action

Name of

action

Before start of dataset processing

action, e.g., join with another dataset,

calculation of statistics for an

attribute, etc.

action-stop Completion of

processing

action

Name of

action

After completion of dataset

processing action

Below are some examples of monitoring events in JSON format.

Example 1: Start of an FFT on an image by the image_analysis component.

{

 source: "image_analysis",

 timestamp: "2024-05-31T05:21:36Z",

 metric: "action-start",

 value: "do_FFT",

 result: None,

 log: "FFT on the image"

}

Example 2: Start of checking validity of raw data that are read by the read_raw_data

component.

{

 source: "read_raw_data",

 timestamp: "2024-06-02T21:15:45Z",

 metric: "action-start",

 value: "check_validity",

 result: None,

 log: "Check validity."

}

UPCAST D3.1: Negotiation and Execution Modules v1

69

Example 3: End of validity check of the raw data by the read_raw_data component with

a failed outcome, and an explanation of the reason.

{

 source: " read_raw_data",

 timestamp: "2024-06-02T21:16:27Z",

 metric: "action-end",

 value: "check_validity",

 result: -1,

 log: "Validity check failed due to incorrect formatting."

}

6.2 Plugin Monitoring

This section presents the UPCAST functions for monitoring the execution of the plugins

that are used by the dataset provider before any execution of the dataset, i.e., during the

preparation and annotation of a dataset, its advertisement and the negotiation between

the dataset provider and the dataset consumer. The purpose of the plugin monitoring is

to keep a record of all actions that take place before dataset execution that are

supported by the UPCAST plugins.

UPCAST plugins are required to generate plugin monitoring event to a Kafka topic

UPCAST-plugin. The plugin monitoring events are JSON objects and have the following

structure

{

 source: [source component, type: string]

 timestamp: [timestamp of event at source, type: datetime]

}

Each plugin emits different information for monitoring as shown below.

Negotiation: At each iteration it emits

 nid: string

 action: string

 result: object

nid is the negotiation id, action is the negotiation action and result is the result of the

negotiation action.

Pricing: at the return of its invocation it emits

 did: string

 range: tuple

 explanations: object

did is the unique dataset id, range is the suggested price range of the dataset and

explanations is a representation of the explanation for the suggested price range.

Environmental: at the return of its invocation it emits

 did: string

 provider_id: string

UPCAST D3.1: Negotiation and Execution Modules v1

70

 consumer_id: string

 exec_env_id: string

 env_profile: object

did is the unique dataset id, provider_id is the id of the provider, consumer_id is the id of

the consumer, exec_env_id is the id of the consumer execution environment, and

env_profile is the resulting environmental profile.

Usage policies: at the return of its invocation it emits

 did: string

 policy_id: string

did is the unique dataset id and policy_id is the id of the usage and access policy.

Publishing: at the return of its invocation it emits

 did: string

 marketplace_id: string

 update: object

did is the unique dataset id and marketplace_id is the id of the marketplace. Update is an

object that represents any updates that have been made for this dataset, e.g., new

suggested price.

UPCAST D3.1: Negotiation and Execution Modules v1

71

7 Conclusions
Deliverable D3.1 presents some of the key technologies of UPCAST, their interfaces and

early designs. In particular, the document presents the negotiation plugin that is used

between providers and consumers to negotiation the terms of the processing of the

dataset and agree on a contract, the execution modules that are used to execute an

agreed workflow and the monitoring plugin that is used to collect data of the dataset

execution for presenting them to the dataset provider and the feeding them to the

compliance plugin. Moreover, the data exchange functions of UPCAST are presented

that are used for exchanging the dataset between a provider and a consumer in a secure

way. The document complements the early designs of UPCAST plugins as they are

reported in Deliverables D2.1 [5], D2.2 [6], D3.3 [7]. The final version of the Negotiation

and Execution modules of UPCAST will be reported in D3.2 [8].

UPCAST D3.1: Negotiation and Execution Modules v1

72

8 References

[1] UPCAST, “D1.2: MVP definition and architecture,” 2023.

[2] UPCAST, “D1.3: Updated project concept and architecture,” 2024.

[3] UPCAST, “D2.2: Privacy and Usage Control Modules,” 2024.

[4] S. Jablonski and C. Bussler, Workflow Management: Modeling, Concepts,

Architecture and Implementation, London: International Thomson Computer Press,

1996.

[5] H. Meda, A. Sen and A. Bagchi, “On detecting data flow errors in workflows,” Journal

of Data and Information Quality, vol. 2, no. 1, pp. 4:1-4:31, 2010.

[6] A. Kahn, “Topological sorting of large networks,” Communications of the ACM, vol.

5, no. 11, pp. 558-562, 1962.

[7] UPCAST, “D2.1: Pricing and Discovery Modules v1,” 2024.

[8] UPCAST, “D2.2: Privacy and Usage Control Modules v1,” 2024.

[9] UPCAST, “D3.3: Environmental Module v1,” 2024.

[10] UPCAST, “D3.2: Negotiation and Execution modules v2,” TBP 2025.

UPCAST D3.1: Negotiation and Execution Modules v1

73

9 Acronyms

Acronym Explanation

AI Artificial Intelligence

CPU Central Processing Unit

DPV Data Privacy Vocabulary

DPW Data Processing Workflow

DSL Domain-Specific Language

EIO Environmental Impact Optimiser

GDPR General Data Protection Regulation

HPC High Performance Computing

IDSA International Data Spaces Association

LLM Large Language Model

MVP Minimum Viable Product

NLP Natural Language Processing

ODRL Open Digital Rights Language

PDP Policy Decision Point

PMP Policy Management Point

PUC Privacy and Usage Control

RC Resource Consumer

RP Resource Provider

UI User Interface

WMO Workflow Model Ontology

