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1 Introduction 

1.1 Purpose of the Deliverable 
This deliverable presents the first version of the Environmental Impact Optimizer plugin (D3.3), 

which is linked to task T3.3 of Work Package 3 in the UPCAST project. It serves as a public 

record of the progress achieved in this task, showcasing the plugin development through 

practical demonstration.  

In Work Package 1, Deliverable D1.2 defines the UPCAST MVP and its core functionalities. 

Figure 1 shows the relevant plugin highlighted in this deliverable. 

 

Figure 1: Core functionality included in the UPCAST MVP. Environmental Impact Optimizer Plugin 
highlighted for this deliverable. 

This document is accompanied by a video demonstration showcasing the use of the first 

version of the plugin that is presented here. https://youtu.be/hI5gDodvHZcon 

1.2 Scope of the Document 
This document serves as the technical specification for D3.3 of the UPCAST project. It is a 

public document that describes the progress of development and the practical demonstration 

of the environmental impact optimizer plugin. This document is structured into the following 

key chapters: 

• Chapter 2 explains the motivations behind the development of the plugin. It examines 

some of the pressing environmental challenges being faced in high performance 

computing (HPC), and the key regulatory requirements being introduced by the 

European Union (EU). Section 2.3 analyses the results of a survey sent to the UPCAST 

Pilot partners to understand their hardware infrastructure, key processes and 

capabilities. 



• Chapter 3 describes the first version of the plugin, showcasing the progress carried 

out in Task T3.3. It includes the architecture, API and steps on how to run the 

demonstrator. It also describes the various tests and experiments carried out towards 

the development of the plugin.  

• Chapter 4 concludes the document by summarizing the key activities performed in this 

deliverable and outlines the next steps for task T3.3. 

 

2 Background 

2.1 Environmental Challenges in HPC 
AI and Machine Learning (ML), big data services, analytics, blockchain, 5G, modelling and 

simulations, virtual reality, research applications, and other cross-cutting technologies are 

exploding the demand for HPC infrastructure that supports heavy operations.  HPCs are 

energy-intensive infrastructures due to their intensive computational power, such as fast 

processors (e.g., multi-core CPU, GPU, and TPU), large memory configurations, and parallel 

processing for simultaneous tasks. This significantly impacts the energy used for storing, 

processing, and transferring information, with even greater effects expected in the coming 

years.  

The development and training of AI and ML models come with a significant energy and carbon 

footprint. Studies indicate that training can account for 20-40%, while inference contributes 

60-70% (Meta1, Google2). As AI models, particularly large language models (LLMs), increase 

in size and applications proliferate,  the energy demand for AI operations continues to 

escalate. Therefore, developing environmentally efficient AI operations is essential for 

reducing the carbon footprint. The environmental impact optimizer plugin addresses this need 

by promoting energy-efficient practices, from basic atomic operations to more complex AI 

and ML models.   

 

2.2 EU Regulation and Compliance 
With data centers emerging as major energy consumers, the evolving landscape of the EU and 

international environmental directives directly influences how these facilities manage and 

monitor their environmental impact. This includes energy consumption, carbon footprint, and 

the overall environmental burden associated with storing, processing, and transferring data.  

The European Union (EU) Code of Conduct on Data Centre Energy Efficiency is a voluntary 

program launched in 2008 to help data centers reduce their energy consumption. It was most 

 
1 Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N., Maeng, K., Chang, G., Aga, F., Huang, J., Bai, C., 
Gschwind, M., Gupta, A., Ott, M., Melnikov, A., Candido, S., Brooks, D., Chauhan, G., Lee, B., Lee, H.-H., ... 
Hazelwood, K. (2022). Sustainable AI: Environmental Implications, Challenges and Opportunities. Proceedings of 
Machine Learning and Systems, 4, 795–813 
2 Patterson, D., Gonzalez, J., Hölzle, U., Le, Q., Liang, C., Munguia, L.-M., Rothchild, D., So, D., Texier, M., & Dean, J. 
(2022). The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink (arXiv:2204.05149). arXiv. 
https://doi.org/10.48550/arXiv.2204.05149 

https://doi.org/10.48550/arXiv.2204.05149


recently revised in 2022.3 The Code provides guidelines for data center operators to improve 

energy efficiency, covering areas such as cooling systems, server utilization and power 

management.  

The European Green Deal4 is the European Union's ambitious plan to transform the bloc into 

a sustainable and climate-neutral economy by 2050. The main goal is to achieve net-zero 

greenhouse gas emissions by 2050. 

The European Climate Neutral Data Centre Pact5 is an industry-driven initiative launched in 

2020 with the ambitious goal of achieving climate-neutral data centers across Europe by 2030. 

The key areas of focus include improving energy efficiency, utilizing renewable energy 

sources, and minimizing the carbon footprint throughout the lifecycle of a data center. The 

Pact serves as a collective effort by the European data center industry to become more 

sustainable and contribute to the EU's Green Deal objectives. 

The recent updates to the EU's Energy Efficiency Directive6 (EED) emphasize transparency and 

efficient resource utilization. This highlights the crucial role of data centers in promoting 

environmental, economic, and societal sustainability. Data centers exceeding 500 kW in rated 

power must report energy efficiency metrics starting from May 15, 2024. To comply with these 

regulations, adopting environmentally efficient practices for data storage, processing, and 

transfer is crucial. 

2.3 Survey of Hardware Infrastructure of Pilots 
To gather requirements and to inform the design of experiments for the environmental impact 

optimizer plugin, a survey was distributed to the UPCAST pilot partners gathering their 

requirements and understanding their current practices. A Google Form7 was sent to the 

partners to gather information about the hardware infrastructure, type of data possessed and 

their typical workflows.  

There are a total of 18 questions and four pilots responded to the survey. The responses are 

available in a spreadsheet here.  

The initial questions focus on how much data each organisation typically collects and what is 

the frequency of collecting that data. Based on the results of the survey, two pilots generate 

approximately 1GB of data per day, while the other two declared that the total amount of data 

they store is 500GB and 150GB. In terms of frequency, there was no fixed time interval for 3 

pilots as it depends on each activity or project. One organization collects data once every 24 

hours.  

Questions 3 to 11 focus on the execution environment or hardware infrastructure that inform 

this task of the storage and processing capabilities of each pilot partner. All the partners have 

or access an execution environment where they typically run their workflows. Figure 2, shows 

 
3 https://joint-research-centre.ec.europa.eu/scientific-activities-z/energy-efficiency/energy-efficiency-
products/code-conduct-ict/european-code-conduct-energy-efficiency-data-centres_en 
4 https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en 
5 https://www.climateneutraldatacentre.net/ 
6 https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules/energy-
efficiency-directive_en 
7 https://forms.gle/T1d5YisjLwHCAAiDA 

https://insideidc.sharepoint.com/:x:/r/sites/UPCAST/Shared%20Documents/WP3%20-%20Negotiation%20and%20Execution/T3.3%20Environmentally%20Efficient%20Data%20Operation%20Workflows/Survey%20of%20Pilots%20Hardware/Hardware%20+%20Dataset%20Info%20from%20UPCAST%20Pilots%20(CeADAR)%20(Responses).xlsx?d=wf5111d8c5c21403492eaebbda8fbf47a&csf=1&web=1&e=Ib9DEX


that only one of the pilots solely use their on-premises data center facilities, while the others 

use a mix of cloud infrastructure (AWS) and on-premises servers.  

 

Figure 2: Execution environment infrastructure 

The subsequent questions focus on the specifics of the hardware infrastructure, including 

details about the operating system, processor types, CPU speed, cores, memory (RAM) and 

storage system. The survey revealed that all partners utilize Intel processors with speeds 

ranging from 2.2 GHz to 3.6 GHz. The core count varied, with the maximum being 12 cores for 

a single partner. RAM and storage also showed significant variations among the participants. 

Figure 3 illustrates the frequency at which the execution environment is operational.  



 

Figure 3: Execution environment frequency 

The final section of the survey examined the types of operations performed by each partner 

for their typical use cases. The results revealed a similar pattern in workflows. Three partners 

employ workflows consistent with traditional data science methodologies, including data 

collection, pre-processing, modelling, analytics, and inferencing. One partner utilizes their on-

premises server solely for data storage, without engaging in any analytics activities. 

The survey also addressed the location of the execution infrastructure, a critical factor since 

the carbon footprint of computing is significantly influenced by the location of data 

processing. The geographical distribution of data centers significantly impacts the energy 

source used for powering them, which in turn affects the overall environmental impact. The 

pilot partners store and process their data in Greece, Serbia and Western Europe. 

3 Environmental Impact Optimizer Plugin 
The ultimate aim of the UPCAST environmental impact optimizer plugin is to tackle climate 

change by fostering more power efficient data workflows. These include: 

 

• Reduce Carbon Footprint: Raise awareness and encourage eco-friendly practices 

within data processing, minimizing environmental impact. 

• Optimize Energy Consumption: Streamline data processing workflows (DPWs) by 

suggesting hardware and operations that minimize energy use, leading to cost savings. 

• Simplify Cost Estimation: Facilitate data exchange with clear energy cost estimations, 

enabling informed decision-making. 

• Ensure Regulatory Compliance: Support adherence to environmental regulations for 

data processing. 

 

3.1 Plugin Architecture & API 
 
The environmental impact optimizer plugin has three core functionalities: 



 

• Dataset storage energy and environmental profiling 

• Dataset processing energy and environmental profiling 

• Explainable AI (XAI): A mechanism that explains to what degree (either positively or 

negatively) certain features impact the energy consumption estimation 

 

 
Figure 4: Architectural Overview of the Environmental Impact Optimizer 

  
Figure 4 is the envisioned architecture for the final version of the plugin detailing the system 

components, all plugin functionalities and their interactions for estimating energy 

consumption and environmental impact. In this deliverable, the main functionalities described 

are the dataset storage and dataset processing energy consumption.  

 

The plugin operates independently of data processing workflows (DPWs), data exchange 

methods and the pilot scenarios. However, the input from the pilots regarding their hardware 

infrastructure informed some of the decisions while designing the experiments, which have 

been described in Section 3.2. 

 

Users can access the plugin through three channels: 

• REST API: The plugin is deployed as a REST API service via the https protocol for 

programmatic interaction 

• Data marketplaces: Integration with data marketplaces or platforms is envisioned. 

• UPCAST Monitoring Dashboard: The plugin will also connect to the monitoring 

dashboard for visualization and insights. 

  

Authorized users, such as marketplaces, monitoring entities, data providers and consumers, 

can request energy consumption estimates via the API endpoint.   



 

For this initial version, the plugin estimates energy consumption for a single storage instance 

and a single data processing workflow (DPW) instance. It does not consider storage 

redundancy mechanism or multiple data workflows. Users are responsible for calculating 

overall consumption based on their specific use case. For instance, if a provider broadcasts 

data to multiple consumers using the same workflow, the plugin will estimate the energy cost 

for one execution.  

 

For the initial version of the plugin, the API was designed to provide a single endpoint for the 

following reasons: 

• Users (both consumers and providers) require energy consumption evaluation while 

storing and/or processing the data, regardless of the data exchange methods (API, 

ETL, file transfer etc.) or operational scenarios (such as workflow execution from 

consumer or provider side, database storage in consumer side). This unified plugin 

functionality accommodates all types of users. 

• Both the energy consumption estimators for database storage and 

process/operations utilise the same input data (hardware infrastructure and 

computational properties). Consolidating these functionalities into a single endpoint 

streamlines the design and eliminates redundancy, sparing users from having to input 

the same data twice to obtain their energy consumption metrics. 

  

Note: In the future, a decision may be made to split the endpoint into two endpoints: one for 

the operations and the other for the storage. This would only be necessary if both 

functionalities do not share the same input data. 

 

A query parameter was added to the endpoint to separate the storage energy profile from the 

workflow energy profile. 

For example, when run locally, the URL’s could be:   

• http://localhost:9000/estimates/environmentalProfile?profileType=FULL 

• http://localhost:9000/estimates/environmentalProfile?profileType=DPW 

• http://localhost:9000/estimates/environmentalProfile?profileType=STORAGE 

 

Where DPW corresponds to retrieving the profile for operations in the data processing 

workflow, STORAGE pertains to storage energy consumption and FULL encompasses both 

functionalities. 

Furthermore, for this deliverable, the workflow has been simplified to include a sequential list 

of operations (without iteration or parallel execution). 

 

The primary objective of this deliverable was to conduct experiments and analyze their results 

that can help in designing a robust plugin. The final version of the plugin will expose REST API 

endpoints for the functionalities, adhering to the OpenAPI specification. Section 3.3 shows 

the swagger interfaces of the API. 

 

http://localhost:9000/estimates/environmentalProfile?profileType=STORAGE


3.2 Analysis and Results of Experiments 
To ensure the effectiveness of the environmental impact optimizer plugin, a series of targeted 

experiments have been conducted. This section details the experimental approach, tests 

carried out, the key learnings from the data, and how these insights are helping shape the final 

plugin design.  

The experiments can be classified into two main categories:  

• Dataset Storage Energy Consumption 

• Dataset Processing Energy Consumption 

 

3.2.1 Experiments for Dataset Storage Energy Consumption 
The aim of this section is to measure and analyze the energy consumption of storing datasets 

in hardware infrastructures. 

3.2.1.1 Methodology  
Measuring energy consumption and estimating the environmental impact of storing datasets 

is one of the core functionalities of the UPCAST environmental optimizer plugin. The energy 

consumption and environmental cost is monitored based on metadata and storage system 

specification. For each dataset, the aim is to estimate the environmental impact of storing a 

dataset in a given infrastructure.  Figure 5 provides an architectural overview of modelling a 

dataset based on energy and environmental costs. 

 

 
Figure 5: Overview of Dataset Storage Energy Consumption 

 
The energy and environmental costs of a dataset are calculated by multiplying storage system 

utilisation by static power, excluding traffic or processing actions. The statistical model is 

utilised for calculating energy and environmental costs, derived from equations (1-3). The 

power consumption of a given dataset in a specific storage system is calculated using 

equation (1). 

𝑷 =  𝒔𝒕𝒂𝒕𝒊𝒄 𝒑𝒐𝒘𝒆𝒓 ∗  𝑺𝒕𝒐𝒓𝒂𝒈𝒆_𝒖𝒕𝒊𝒍𝒊𝒔𝒂𝒕𝒊𝒐𝒏(%)     (1) 

 



Where P is the power consumption of a dataset in a storage system, determined by the 

system's utilisation, with static power representing the system's power when idle. 

Storage_utilisation is the percentage of the storage system that has been occupied by the 

dataset. The energy consumption of a dataset in a specific storage infrastructure is 

determined by its duration. Therefore, the energy rating of the dataset over a period time (T) 

is given as, 

𝑬 =  𝑷 ∗ 𝑻𝒊𝒎𝒆(𝑻) (2)   

 
Where E is the energy consumption computed over time T.  
 
We determine the environmental impact, essentially the CO2 emissions of a dataset, by 

multiplying its energy consumption by its carbon intensity (kg/kWh) 

 

𝑪𝑶𝟐_𝒆𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔 = 𝑬 ∗  𝑪𝒂𝒓𝒃𝒐𝒏_𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚(𝒌𝒈/𝒌𝑾𝒉)    (3) 

 

These mathematical models have been implemented in python to calculate energy and 
environmental costs of dataset storage across various infrastructures, allowing data 
producers to compute and estimate their datasets energy consumption and environmental 
impact. 

3.2.1.2 Experiment Data & Results 
To collect observations, several tests were performed by storing a variety of dataset sizes 

across multiple storage infrastructures to which CeADAR currently has access. This is due to 

the absence of a dedicated execution environment in the project. These dataset sizes range 

between 1 GB and 26 GB. The input features used for these experiments have been described 

in Table 1: 

 

Table 1: Input features for Experiments 

Input Feature Description 

storage_system Storage technology or infrastructure (SDD, HDD, NAS etc.) 

storage_system_model A specific storage system identification. 

Storage_system_size_gb Size of the storage system (in GB).   

storage_energy_consumption_w (static power) A static power being consumed by storage technology 
when idle (with no traffic) 

dataset_size_gb The size of a given dataset (GB) stored in a given storage 
technology. 

dataset_storage_utilisation (%) The percentage of a given dataset occupied in the storage 
technology. 

geographic_location_country A country where the dataset is stored and processed. 

stored_dataset_time_span_h The time length for how long a given dataset is stored. 

dataset_update_freq The update frequency of any given dataset 

 

Using these features, the following outputs are calculated: 

• Stored Dataset Energy Consumption: This is the total power consumption (in Wh) 

associated with storing the dataset in the infrastructure. 



• CO2 Emissions: The carbon emissions (in kg/kWh) can be calculated based on the 

average emissions of 0.309 kg/kWh. This value is the CO2 emission factor provided in 

the BEIS report in 20188. 

• Energy Costs: The total energy costs are calculated based on where the computing 

infrastructure is located. Since these experiments were performed in Ireland, the value 

is based on the average price of 0.36 Euro per kWh9.  

Table 2 shows the detailed results of the experiments conducted. 

Table 2: Results of Dataset Storage Experiments 
Storage 
system 

Storage 
Size 
(GB) 
  

Dataset 
Size 
(GB) 
  

Storage_utilis
ation (%) 
  

Time 
Span 
(hrs) 

Energy 
Consumption 
(Wh) 

CO2 
emissions 
(kg/kWh) 

Energy Price 
(euro) 

SDD-
NVMExp
ress-1 

500 1.399 0.2798 12 5.2043 0.0052 0.0019 

2.637 0.527 15 12.253 0.0037 0.0044 

5.415 1.083 30 50.3595 0.0151 0.0181 

8.485 1.697 
  

12 31.564 0.0095 0.0113 

10.829 2.166 32 107.434 0.0322 0.0387 

11.751 2.35 21 76.49 0.0229 0.0275 

14.963 2.993 8 37.113 0.0111 0.0134 

15.823 3.165 4 19.623 0.0059 0.007 

16.970 3.394 7 36.825 0.011 0.0133 

17.826 3.565 3 16.577 0.005 0.006 

21.098 4.22 9 58.869 0.0177 0.0212 

23.735 4.747 6 44.147 0.0132 0.01589 

26.372 5.274 16 130.795 0.0392 0.047 

SDD-
NVMExp
ress-2 

500 1.399 0.2798 7 3.036 0.00091 0.0011 

2.637 0.527 7 5.718 0.00172 0.0021 

5.415 1.083 8 13.429 0.004 0.0048 

8.485 1.697 8 21.043 0.0063129 0.0075 

10.829 2.166 32 107.434 0.0322 0.0388 

11.751 2.35 6 21.855 0.0066 0.0079 

14.963 2.993 2 9.28 0.0028 0.0033 

15.823 3.165 
  

2 9.811 0.0029 0.0035 

16.970 3.394 7 36.825 0.011 0.0133 

17.826 3.565 
  

4 22.103 0.0066 0.00796 

21.098 4.22 8 52.328 0.0157 0.0188 

23.735 4.747 3 22.074 0.0066 0.0079 

26.372 5.274 4 32.6988 0.0098 0.0118 

4000 1.399 0.035 8 1.12 0.00036 0.00043 

 
8 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/726911/20
18_methodology_paper_FINAL_v01-00.pdf 
9 https://qery.no/consumer-energy-prices-in-europe/ 



LACiE-
HDD 

2.637 0.066 15 3.956 0.0012 0.0014 

5.415 0.135 8 4.32 0.0013 0.0016 

8.485 0.212 5 4.243 
  

0.001273 0.0015 

10.829 0.271 15 16.26 0.0049 0.0059 

11.751 0.294 6 7.056 0.0021 0.0025 

14.963 0.374 6 8.976 0.0027 0.0032 

15.823 0.396 5 7.92 0.0024 0.0029 

16.970 0.424 10 16.96 0.005 0.0061 

17.826 0.446 8 14.272 0.0043 0.0051 

21.098 0.527 12 25.296 0.00759 0.0091 

23.735 0.593 17 40.324 0.0121 0.015 

26.372 0.659 17 44.812 0.0134 0.016 

SDD-
SATA 

250 1.399 0.5596 24 20.81712 0.006245 0.00749 

2.637 1.055 10 16.3525 0.0049 0.0059 

5.415 2.1659 8 26.85716 0.0081 0.0097 

8.485 3.394 12 63.1284 0.0189 0.0227 

10.829 4.33 9 60.4035 0.0181 0.0217 

11.751 4.700 6 43.71 0.0131 0.0157 

14.963 5.9851 8 74.21524 0.0223 0.0267 

15.823 6.3294 5 49.05285 0.0147 0.0177 

16.970 6.788 12 126.257 0.0379 0.0455 

17.826 7.131 12 132.64 0.0397 0.0478 

21.098 8.439 9 117.72405 0.0353 0.0424 

23.735 9.494 6 88.2942 0.264 0.0318 

26.372 10.549 8 130.8076 0.3924 0.0470 

PCLe-
SSD 

500 1.399 0.2798 14 13.7102 0.00411 0.00493 

2.637 0.5274 9 16.6131 0.00498 0.00598 

5.415 1.083 
  

12 45.486 0.0136 0.0164 

8.485 1.697 15 89.0925 0.0267 0.0320 

10.829 2.1659 
  

12 90.9678 0.0273 0.0327 

11.751 2.3502 10 82.257 0.0247 0.0296 

14.963 2.9926 7 73.3187 0.0219 0.0264 

15.823 3.1646 5 55.3805 0.0166 0.0199 

16.970 3.394 13 154.427 0.0463 0.0556 

17.826 3.565 7 87.3425 0.0262 0.03144 

21.098 4.2196 
  

6 88.6116 0.0266 0.0319 

23.735 4.7470 8 132.916 0.0399 0.0478 

26.372 5.274 5 92.295 0.0277 0.0332 

 



3.2.1.3 Insights from Experiments 
This subsection describes the data generated from the experiments and some key insights 

gained that can inform how power consumption varies by storing datasets in different 

storage systems.  

The final cleaned dataset obtained after running these experiments had 164 observations 

and 11 features. These have been described in Table 3. 

 

Table 3: Storage Dataset Features 

Feature Name Description 

Storage_system Storage technology or infrastructure (SDD, HDD, NAS 
etc.)   

Storage_system_model A specific storage system identification.   

Storage_system_size_gb Size of the storage system in GB.    

Storage_energy_consumption_w A static power consumption of the storage technology 
when idle (with no traffic) 

Data_source_path The path or location where the dataset is stored in a 
given storage technology. 

Dataset_size_gb The size of a given dataset (GB) stored in a given 
storage technology. 

Dataset_storage_utilisation(%) The percentage of a given dataset occupied in the 
storage technology. 

Stored_dataset_time_span_h The time length for how long a given dataset is stored.   

Stored_dataset_energy_consumption_wh Computed stored dataset energy consumption (Watt) 

Energy_intensity_wh_per_b The power intensity of a given dataset per bit. 

CO2-emission A footprint of a given dataset that stored for time (t) 

 
Please note that the number of observations is limited; therefore, further experiments will be 

conducted to obtain more accurate insights. The following analyses are based on the 

available observations and may vary with more comprehensive experiments. 

 

Figure 6 provides the summary statistics of the key outputs for all observations in the data. 

The mean energy consumption is 37 Wh, and the mean CO2 emissions are 11 grams per 
kWh. 

 
Figure 6: Summary Statistics 

 

The histograms presented in Figure 7 show the distribution of the CO2 emissions and total 

energy consumption for storing the datasets. 



 
  

Figure 7: Histograms of CO2 emission & Stored Energy Consumption 

 
The histograms reveal a right skew in the distribution of energy consumption and CO2 

emissions. This indicates that most data points cluster towards lower consumption levels, 

with a few instances exhibiting significantly higher power usage. Logically, the datasets that 

are bigger in size should have a higher storage energy consumption. However, this also 

depends on the kind of storage system used and the scatterplot in Figure 8 shows this.  

 

 
Figure 8: Scatterplot of Dataset Size vs Energy Consumption 

 
From the above, it is evident that the LACiE-HDD storage system (colored green) exhibits lower 

energy consumption compared to other storage systems as datasets sizes increase.  

 

Further analysis was conducted to assess the impact of storage systems on stored energy 

consumption and, consequently, on carbon footprint. The boxplot in Figure 9 shows the range 

of energy consumption across different storage systems. 
  



 
Figure 9: Storage System Energy Consumption Variation 

 
Each storage system varies in actual size. For these experiments, three different storage 

system sizes were used: 250GB, 500GB and 4000GB.  Figure 10 illustrates the variation in 

energy consumption across different storage system sizes. 

  

 
Figure 10: Energy Consumption per Storage System Size 

 
It can be inferred that the size of the storage system majorly influences energy consumption. 

Figure 11 shows the relation between power consumption and storage time span. 

  



 
Figure 11: Energy Consumption vs Time Span 

 
Analyses were conducted from multiple perspectives, exploring various features and their 

impact on the energy consumption of storing datasets. To deepen our understanding of these 

relationships and predict energy consumption, several regression models were evaluated. 

Among them, the Random Forest Regressor and Gradient Boosting exhibited promising 

results, indicating that the features serve as meaningful predictors of energy consumption. 

R-squared values of approximately 0.81 were obtained as shown in Figure 12 

 

 
Figure 12: Regression Scores (R-Squared) 

 

To visually evaluate the model’s performance, refer to Figure 13, where the Energy 

consumption is plotted against its actual values (Y_true) and the predicted values from the 

model (Y_pred). 



 
Figure 13: True vs Predicted Values of Energy Consumption 

  

3.2.2 Experiments for Dataset Processing Energy Consumption 
The aim of this section is to measure and analyse the energy consumption of processing 

datasets by applying multiple operations in hardware infrastructures. 

 

3.2.2.1 Methodology 

The other core functionality of the UPCAST environmental optimizer plugin is monitoring and 
quantifying the energy consumption and environmental costs of processing data or applying 
operations to datasets. The operations can be atomic or AI/machine learning models, and the 
energy consumption is calculated using a tool provided by CeADAR. 

This tool, called Papillon, is a system that monitors processes or workflows that are being 
executed and calculates its power consumption in real time, every minute. It also collects 
other system information such as the CPU usage, input/output streams and RAM usage. All 
this information is stored in its internal database. It employs a client-server architecture, as 
illustrated in Figure 14.  

 

Figure 14: Papillon System 



3.2.2.2 Experiment Data & Results 
To collect data for analysing data processing workflows and to build a model for estimating 

their energy consumption, we monitored and calculated the power consumption and 

environmental costs of processes applied to datasets, using atomic operations and machine 

learning models across three different computing infrastructures. 

• Datasets: The experiment utilized open-source time series datasets with three sizes: 

400MB, 800MB and 1.4GB. 

• Computing Infrastructure: The experiment was conducted on three CPU-based 

hardware infrastructures and three major operating systems: Linux, MacOS, and 

Windows. 

• Operations: Python scripts were used to execute atomic operations and machine 

learning models across the three computing infrastructures, with power consumption 

calculated and stored in a MySQL database. 

 

Table 4 provides details on the hardware infrastructure and Table 5 lists the set of operations 

used in the experiments. 

Table 4: Hardware Infrastructure Used for Experiments 

Operating System CPU Cores Processor Speed Memory (RAM) 

Ubuntu 4 2.60 GHz 16 GB 

Windows 5 2.00 GHz 16 GB 

MacOS 12 2.70 GHz 32 GB 

 

Table 5: List of Operations Used for Experiments 

Operation Name Operation Type Description 
append Atomic Add more data to the dataset 

count_num_rows Atomic Count the total number of rows in the dataset 

detecting_missing_values Atomic Find how many values are missing 

filter_by_spec_cols Atomic Retrieve specific feature 

groupby_count Atomic Get the count of values grouped by feature 

groupby_id Atomic Group data points by ID 

Identify_outlier Atomic Detect datapoints with abnormal values 

mean Atomic Calculate the average value of a feature 

remove_null_values Atomic Remove all missing values 

replace_null_values Atomic Replace missing values with another value 

select_by_id Atomic Retrieve values based on the ID 

union_col Atomic Combine values of different features 

update_atomic_op Atomic Update values of all features 

update_spe_cols Atomic Update values of a specific feature 

LSTM_model ML Model Applying the LSTM Deep Learning model 

RF ML Model Applying the Random Forest model 

 

Table 5 shows that several atomic operations have been considered. This is because a data 

processing workflow can have multiple operations and the possibilities are endless, 



however, most machine learning or AI workflows will use a combination of these atomic 

operations, especially when preprocessing or manipulating data to gather insights.  

 

Table 6 shows the detailed results of tests carried out on the 1.4 GB dataset across multiple 

operations and the three hardware infrastructures.  

 

Table 6: Results of Experiments Applied to 1.4 GB Dataset 

Operating 

System 

Operation Name Energy 

Consumption (Wh) 

CO2 

(kg/kWh) 

Energy Cost 

(Euros) 

Ubuntu 
VM 

LSTM_model 130.072909 0.03902187 0.04682625 

RF 50.0583945 0.01501752 0.01802102 

Atomic_op_append 1.77976778 0.00053393 0.00064072 

LSTMModel 19.2859297 0.00578578 0.00694293 

Count_num_rows 7.33354578 0.00220006 0.00264008 

Detecting_missing_values 3.67780292 0.00110334 0.00132401 

Filter_by_spec_cols 1.8960032 0.0005688 0.00068256 

groupby_count 3.55127286 0.00106538 0.00127846 

Groupby_id 1.77855303 0.00053357 0.00064028 

Identify_outlier 3.63071122 0.00108921 0.00130706 

mean 27.5538627 0.00826616 0.00991939 

Remove_null_values 3.65483054 0.00109645 0.00131574 

Replace_null_values 20.0985895 0.00602958 0.00723549 

Select_by_id 1.77855303 0.00053357 0.00064028 

Union_col 1.87721062 0.00056316 0.0006758 

Update_atomic_op 1.87346224 0.00056204 0.00067445 

Update_spe_cols 28.0857777 0.00842573 0.01011088 

Windows 
OS 

LSTM_model 139.550729 0.04186522 0.05023826 

RF 48.8511355 0.01465534 0.01758641 

Atomic_op_append 3.4759414 0.00104278 0.00125134 

Count_num_rows 7.3835996 0.00221508 0.0026581 

Detecting_missing_values 3.6033893 0.00108102 0.00129722 

Filter_by_spec_cols 1.845362 0.00055361 0.00066433 

groupby_count 5.56337 0.00166901 0.00200281 

Groupby_id 3.674023 0.00110221 0.00132265 

Identify_outlier 3.6441 0.00109323 0.00131188 

mean 22.0942465 0.00662827 0.00795393 

Remove_null_values 3.650979 0.00109529 0.00131435 

Replace_null_values 18.4336174 0.00553009 0.0066361 

Select_by_id 1.826746 0.00054802 0.00065763 

Union_col 1.8895483 0.00056686 0.00068024 

Update_atomic_op 1.93475535 0.00058043 0.00069651 

Update_spe_cols 21.7644609 0.00652934 0.00783521 

Mac OS LSTM_model 125.615685 0.03768471 0.04522165 

RF 46.9733807 0.01409201 0.01691042 

Atomic_op_append 1.85035494 0.00055511 0.00066613 



Count_num_rows 7.44746256 0.00223424 0.00268109 

Detecting_missing_values 3.6678349 0.00110035 0.00132042 

Filter_by_spec_cols 1.86764623 0.00056029 0.00067235 

groupby_count 3.70329923 0.00111099 0.00133319 

Groupby_id 3.9859174 0.00119578 0.00143493 

Identify_outlier 3.68622799 0.00110587 0.00132704 

mean 22.3091912 0.00669276 0.00803131 

Remove_null_values 3.70658204 0.00111197 0.00133437 

Replace_null_values 18.4301561 0.00552905 0.00663486 

Select_by_id 1.83522424 0.00055057 0.00066068 

Union_col 1.8523434 0.0005557 0.00066684 

Update_atomic_op 1.89483734 0.00056845 0.00068214 

Update_spe_cols 22.1358526 0.00664076 0.00796891 

 

The measured results indicate that the ML models consumed more significant energy than 

atomic operations, causing a substantial environmental impact. The LSTM ML model 

consumes an average of 131Wh on a 1.4GB dataset across the three computing 

infrastructures. The experiment demonstrates that the same principle works with various 

datasets and types across different computing infrastructures that have access to them.  

 

3.2.2.3 Insights from Experiments 

This subsection describes the data generated from the experiments and some key insights 

gained that can inform how power consumption varies with different operations or 

processes applied to datasets.  

Several observations were collected during the execution of the experiments (over 1000 

data points), however, after applying preprocessing techniques and removing outliers, the 

final cleaned operations dataset that has been analyzed contains 137 observations with 9 

features that have been described in Table 7.  

 

Table 7: Operations Dataset Features 

Feature Name Description 

script The script name used in the experiment 

power The energy consumption associated with the operation (in Wh) 

cpu Processing unit being used in the experiment 
storage The amount of RAM being consumed (in GB) 

IO The number of input/output streams associated with the operation 

co2 The CO2 emissions associated with the operation (in g/kWh) 

host The host system name where the experiment was executed – values 
are 284, 285 or 286 

db The total size of the dataset (in MB) 

powerMode The power agent generated by the master for every host. 
 

Figure 15 details the summary statistics of the key outputs for all the observations in the data. 

The mean energy consumption is 4.8Wh, and the mean CO2 emission is 1.4 grams/kWh. 

  



 
Figure 15: Summary Statistics 

  
The histograms presented in Figure 16 show the distribution of the CO2 emissions and Total 

energy consumption for processing datasets. 

 

 
Figure 16: Histograms of Power Consumption and CO2 Emissions 

 

The histograms indicate that the energy consumption and CO2 emission have a right skewed 

distribution. This is because most observations relate to atomic operations applied to the 

datasets that consume less power than heavier modelling processes. 

 
Similar to the analyses performed for the storage energy consumption, we visually explored 

relationships between features in the processed data. A key finding was that dataset size 

("db") significantly impacted energy usage. 

The following box plot in Figure 17 shows the energy consumption variation compared to 

dataset size. 

  

 



Figure 17: Energy Consumption for Different Dataset Sizes 

 
Logically, it can be inferred that the power consumption for operations applied to the largest 

dataset (1400 MB) has a higher range than the other datasets. The median value, however, for 

the 800MB dataset and 1400 MB dataset are similar, whereas for the 400MB dataset, it is 

much lower.  

 

Another noteworthy observation in the following box plot in Figure 18 that shows the energy 

consumption variation for each of the three host systems is that there are similar energy 

consumption patterns for each system.  

 

 
Figure 18: Energy Consumption for Different Host Systems  

 
The following scatter plot in Figure 19 shows the relationship between the power consumption 

and CPU utilization.  
  

 
Figure 19: Power Consumption vs CPU Utilization 



  
Experimenting with more complex operations with larger datasets will allow us to gather data 

with higher power consumption. With the data that has been generated for the first version of 

the plugin, regression models were applied to it that illustrate the relationships between the 

feature that needs to be predicted (power consumption) and the independent observations. 

For this analysis, Decision Tree and Random Forest Regressors were applied and the model 

performed well with R-square values of 0.84 and 0.87 

 

 
Figure 20: Regression Scores (R-Squared) 

 
Model performance can be inspected visually in Figure 21 by plotting the Energy consumption 

by comparing its actual value (Y_true) with the value predicted by the model (Y_pred). 

 

 
 Figure 21: True vs Predicted Values of Energy Consumption 

 

 
The total energy consumption comprises the dataset storage energy consumption and the 

workflow energy consumption. To calculate the total cost, we need to consider the carbon 



cost and the energy cost associated with the total energy consumption. This total energy 

consumption is the sum of the energy consumption associated with storing a dataset and the 

energy consumption associated with processing the dataset. 

 

3.3 Swagger API Interface 
Figure 22 shows the REST API Swagger specification. There are three endpoints: one to 

compute the energy consumption, one to estimate it and the third endpoint will be used to 

explain the energy consumption estimation. The current OpenAPI specification is available in 

the project’s Github repository here: 

 https://github.com/EU-UPCAST/OpenAPISpecification/tree/main/environmental_plugin 

 

 
 

 
Figure 22: REST API Swagger Specification 

 

Figures 23 to 26 show the Swagger interfaces of the request and response for the dataset 

storage power consumption estimation, for a sample resource specification with relevant 

hardware and computing infrastructure properties. The final version of the plugin will access 

the energy profiling models when called via the endpoint.  

 
 



 
 

Figure 23: Sample request 

 

 
Figure 24: Sample Response profileType=STORAGE 

 



 
Figure 25: Sample Response profileType=DPW 

 
Figure 26: Sample Response profileType=FULL 

 
 

4 Conclusion and Next Steps  
This deliverable is the first version of the environmental optimizer plugin that described the 

architecture, initial experiments performed and the API specification showing the progress of 

its design and development.  

A major challenge for this task is the lack of a dedicated execution environment. This absence 

has prevented us from running more standardized monitoring and benchmarking tests. 

Consequently, we had to adapt and conduct experiments on infrastructure that was available 

to us.  

For the next deliverable, which is the final version of the plugin, the following will be explored: 

• Monitoring the power consumption of processes or AI models running in the GPU. 

Currently, monitoring is done with regards to the CPU power consumption.  



• To gather more insights and data, the experiments will diversify in terms of using 

different types of datasets (such as unstructured image or textual data) and will also 

be executed on higher performance hardware infrastructures. 

• Energy profiles will be generated by applying unsupervised techniques to the 

experiment data, such as clustering to find meaningful groups. This is contextual and 

will depend on each data processing workflow or workload. 

• Explainable AI techniques (XAI), like those being applied to the pricing plugin will also 

be used to gain a better interpretation of the energy consumption. A report will include 

these explanations along with recommendations on how the end user can optimize 

their workflow or reduce consumption. These can also aid in creating the energy 

profiles.  

• Integration of the plugin within the wider UPCAST framework and data 

marketplaces/platforms. 

 

ANNEX I ACRONYMS 
Acronyms List  

DoA Description of Action 

DPW Data Processing Workflow 

EIO Environmental Impact Optimizer 

XAI Explainable AI 

API Application Programming Interface 

LSTM Long Short-Term Memory Neural Network 

RF Random Forest 

VM Virtual Machine 

OS Operating System 

GPU Graphics Processing Unit 

TPU Tensor Processing Unit 

 


